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Algorithmic developments focus on key challenges in extreme scale

computing: Random Field Representation with Sparse Sample Sizes

« Data-Free Inference techniques to handle missing data | | | | | o | | X h,w,,,,,,,
. Random field representation with sparse sample sizes » High dimensional random fields (or random vectors) are prevalent in many applications, e.g. Wiener processes, subsurface flows with N‘V’*%@%\MJM
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 Compressed sensing techniques for approximating high-dimensional uncertainty

X(t)

« Itis convenient and oftentimes necessary to approximate these random fields or vectors with a low-dimensional approximation.
« The Karhunen-Loeve Expansion (KLE) allows us to represent a random field or vector as a linear combination of orthogonal and
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Data F ree I nfe re n Ce (D FI) With uncorrelated random variables (analogous to a Fourier Series expansion):
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Uncertainty propagation typically involves two steps: * In the discrete setting, the KLE requires the evaluation of the eigenvectors of the covariance matrix.
1. Estimating the uncertainty in model parameters from direct observations or data * However, if the number of samples used to estimate the covariance matrix is less than the dimensionality of the random vector, the covariance matrix will be singular.
(e.g., using Bayesian inference). * In this case, we can use the Singular Value Decomposition (SVD), a.k.a Principle Component Analysis (PCA), to perform the KLE.
2. Propagating this parametric uncertainty (e.g., posterior density) back through the « Each high-dimensional random vector sample can be projected onto to the sub-space spanned by the left-singular values of the samples covariance matrix:
model to obtain predictions.  We can use these projections as random samples in order t?z approximate the densities on the KLE coefficients.
Example: Fitting rate parameters of elementary reactions 010 S S X(t) =~ Z(X(t), or(1)or(t), (ex,e;) =0k, VEk,j
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Oftentimes. both steps are done by two different researchers First four principle components using 100 Brownian motion sample  Projection of 100 Brownian motion paths onto n principle components for n = 4,16,32, and 64 (from left to right)
i P Y ’ paths (of a 500-dimensional random field) plotted against exact ;sing only 100 sample paths to perform the SVD for this 500-dimensional random field.

and information is lost at the interface. eigenvectors. Vectors are shown in absolute value.

. In particular, we loose information about the uncertainty =) DF Iy
structure (e.g., posterior density) on model parameters. - (@77/ o
 Typically, we also do not have access to the raw data. 7= ' T e

" Wnat we do have are processed data producs, eg. eror Compressed Sensing with Cross-Validation for Polynomial Chaos
Expansions (PCE) :

| | | ion: Jfos(x)=cos| — ¢;& |, €€ O,ld
* Polynomial Chaos is a technique to represent a Test Function: fos() Zzzl .

function of a random variable as a sum of basis Different Compressed Sensing Methods

With DFIl, we are able to accurately recover the uncertainty structure in the model
parameters by exploring the space of surrogate data sets which are consistent with the
given processed data products, e.g. moments or quantiles on raw data or predicted

Jantities polynomials, which in turn depend on the random * 20-fold Cross validation error Sp A
q : : . . . Basis Pursuit (BP) for different tolerance levels for
variables themselves. One can use this polynomial S .
H d the DFI al ith K7 _ _ . a five-dimensional PCE. The
ow does the algorithm work | | expansion as a surrogate to obtain statistics on the o = arg min ||af;, such that Aa = f oracle is the true error for the .
« We create an MCMC chain on the data, where each state defines a hypothetical, raw function of interest. OMP solution at each tolerance
data set * The following is a truncated polynomial chaos . Basis Pursuit Denoising (BPDN) level. We are interested in
* For each data set, we evaluate the relevant statistics on the posterior and/or the expansion along with the corresponding polynomial tolerance with the minimum
predictive quantities. basis set over d dimensions: o = arg min |||y, such that |Aa —f|, <¢ cross validation error. B OO S O A
« We accept the data set if the relevant statistics are consistent with the given information. ot Matehing p - OMP . We can also perform cross validation over different index sets
* We then pool (e.g., average) all posteriors for each surrogate data set. f(f) ~ E : Oéiwi(é), (%A %’)L =01y «  Orthogonal Matching Pursuit ( ) of polynomials. From left to right, we have q = 1, .8, .6 and .4
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Comparison of su.mmary statistics for hypothetical Compa.rison of .averaged (i.e., linearly pooled) _¢1(£m) - @Dp(fm)_ ap _fm_ .. 1. One performs the Optimization on the training o] 03]
data sets (shown in colored dots) produced by the — posterior density on model parameters for T set and then evaluates the performance on the
DFI algorithm vs. the summary statistics of the hypothetical data sets produces by the DFI algorithm : . : : -

- . ) € . : testing set. « We use cross validation to find the optimal set of index sets
original raw data (shown as black lines). Here, the  vs. the posterior calculated from the original, raw  We elect to solve this linear system via compressed : and tolerance levels for dimensions 2 (left) and 5 (right)
summary statistics are given as means and  data (which is missing). sensing methods, which searches for the sparsest 2. The optimal parameters are chosen so that they * For each optimal set, we compute the error in the pol.ynomial
2.5-97.5% quantiles on the posterior samples . o zo W Naim. B. Debusschere, et al., Data-free inference of the joint i i minimize the errors for the test set, i.e. the cross e e " .
propagated through the model (i.e., pushed forward Eji]strib-utioen g’fun'certaa{in’mo'daZatgfncetzri’, ; cir'ﬁp. I?’r?ys.?6231 (62815)6 2180-2198, set of coefficients that best solves the linear system validation error approximation using coefiicients calculated via OMP as a

function of the number of polynomial terms.
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posterior samples).



