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Algorithmic developments focus on key challenges in extreme scale 
computing: 
•  Data-Free Inference techniques to handle missing data 
•  Random field representation with sparse sample sizes 
•  Compressed sensing techniques for approximating high-dimensional uncertainty 
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Data Free Inference (DFI) with 
Processed Data Products 

Uncertainty propagation typically involves two steps: 
1.  Estimating the uncertainty in model parameters from direct observations or data 

(e.g., using Bayesian inference). 
2.  Propagating this parametric uncertainty (e.g., posterior density) back through the 

model to obtain predictions.   

Step 1: Posterior on the initial 
concentration and decay rate 
parameters determined via Bayesian 
inference 

Raw data comes from a double 
exponential concentration decay 
model 

Step 2: Posterior is used to predict 
elementary concentration levels at 
difference times 

Oftentimes, both steps are done by two different researchers, 
and information is lost at the interface.  

•  In particular, we loose information about the uncertainty 
structure (e.g., posterior density) on model parameters. 

•  Typically, we also do not have access to the raw data.  
•  What we do have are processed data products, e.g. error 

bars on the raw data or predicted values.  

DFI  

With DFI, we are able to accurately recover the uncertainty structure in the model 
parameters by exploring the space of surrogate data sets which are consistent with the 
given processed data products, e.g. moments or quantiles on raw data or predicted 
quantities.  
 

Comparison of summary statistics for hypothetical 
data sets (shown in colored dots) produced by the 
DFI algorithm vs. the summary statistics of the 
original raw data (shown as black lines). Here, the 
summary statistics are given as means and 
2.5-97.5% quantiles on the posterior samples 
propagated through the model (i.e., pushed forward 
posterior samples).  

Comparison of averaged (i.e., linearly pooled) 
posterior density on model parameters for 
hypothetical data sets produces by the DFI algorithm 
vs. the posterior calculated from the original, raw 
data (which is missing). 

•  High dimensional random fields (or random vectors) are prevalent in many applications, e.g. Wiener processes,  subsurface flows with 
uncertain permeability, etc.  

•  It is convenient and oftentimes necessary to approximate these random fields or vectors with a low-dimensional approximation. 
•  The Karhunen-Loeve Expansion (KLE) allows us to represent a random field or vector as a linear combination of orthogonal and 

uncorrelated random variables (analogous to a Fourier Series expansion):  

•  In the discrete setting, the KLE requires the evaluation of the eigenvectors of the covariance matrix. 
•  However, if the number of samples used to estimate the covariance matrix is less than the dimensionality of the random vector, the covariance matrix will be singular.   

•  In this case, we can use the Singular Value Decomposition (SVD), a.k.a Principle Component Analysis (PCA),  to perform the KLE.    
•  Each high-dimensional random vector sample can be projected onto to the sub-space spanned by the left-singular values of the samples covariance matrix:  
•  We can use these projections as random samples in order to approximate the densities on the KLE coefficients.  

X(t) =
1X

k=1

Zkek(t), corr(ZkZj) = 0, hek, eji = �kj , 8k, j.

Projection of 100 Brownian motion paths onto n principle components for n = 4,16,32, and 64 (from left to right) 
using only 100 sample paths to perform the SVD for this 500-dimensional random field. 

500-dimensional Sample Brownian 
motion paths 

First four principle components using 100 Brownian motion sample 
paths (of a 500-dimensional random field) plotted against exact 
eigenvectors. Vectors are shown in absolute value.  

Example: Fitting rate parameters of elementary reactions 

How does the DFI algorithm work? 
•  We create an MCMC chain on the data, where each state defines a hypothetical, raw 

data set 
•  For each data set, we evaluate the relevant statistics on the posterior and/or the 

predictive quantities. 
•  We accept the data set if the relevant statistics are consistent with the given information.  
•  We then pool (e.g., average) all posteriors for each surrogate data set.  

Random Field Representation with Sparse Sample Sizes 

X(t) ⇡
nX

k=1

hX(t),�k(t)i�k(t), hek, eji = �kj , 8k, j

Compressed Sensing with Cross-Validation for Polynomial Chaos 
Expansions (PCE) 

•  Polynomial Chaos is a technique to represent a 
function of a random variable as a sum of basis 
polynomials, which in turn depend on the random 
variables themselves. One can use this polynomial 
expansion as a surrogate to obtain statistics on the 
function of interest.  

•  The following is a truncated polynomial chaos 
expansion along with the corresponding polynomial 
basis set over d dimensions: 

1 Foundations

We want to approximate a d-dimensional function by a truncated polynomial
chaos expansion

f(⇠) ⇡
X

 i2Ad
p,q

↵i i(⇠), ( i, j)L2(⇢)
= �i,j

where the basis set

Ad
p,q = { � : k�kq  p}, � = (�1, . . . ,�d)

controls the degree and number of indices involved in an expansion. Ad
p,1 is the

space of polynomials of degree at most p and q = 1
Given a precomputed set of model evaluations f = (f(⇠1), . . . , f(⇠m)) ob-

tained from m realizations {⇠i}mi=1 of the random variables we can find the PCE
coe�cients ↵ by solving
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We can also enhance PCE approximation with gradient information when avail-
able by solving
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1.1 Compressed sensing methods

Various methods can be employed to solve (1). The relative accuracy of each
method is problem dependent. Traditionally, the most frequently used method
has been least squares regression. However when A is under-determined, min-
imizing the residual with respect to the `2 norm typically produces poor solu-
tions. Compressed sensing methods have been successfully used to address this
limitation [1, 7]. Such methods attempt to only identify the elements of the
coe�cient vector ↵ with the largest magnitude and enforce as many elements
as possible to be zero. Such solutions are often called sparse solutions. Dakota
provides algorithms that solve the following formulations:

• Basis Pursuit (BP) [4]

↵ = arg min k↵k`1 such that A↵ = f (2)

The BP solution is obtained in Dakota, by transforming (2) to a lin-
ear program which is then solved using the primal-dual interior-point
method [3, 4].
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•  Given a set of function evaluations, f, we can find 
the PCE by solving the following linear system: 
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Various methods can be employed to solve (1). The relative accuracy of each
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imizing the residual with respect to the `2 norm typically produces poor solu-
tions. Compressed sensing methods have been successfully used to address this
limitation [1, 7]. Such methods attempt to only identify the elements of the
coe�cient vector ↵ with the largest magnitude and enforce as many elements
as possible to be zero. Such solutions are often called sparse solutions. Dakota
provides algorithms that solve the following formulations:

• Basis Pursuit (BP) [4]

↵ = arg min k↵k`1 such that A↵ = f (2)

The BP solution is obtained in Dakota, by transforming (2) to a lin-
ear program which is then solved using the primal-dual interior-point
method [3, 4].

1

•  We elect to solve this linear system via compressed 
sensing methods, which searches for the sparsest 
set of coefficients that best solves the linear system 

Different Compressed Sensing Methods 

Cross Validation 

•  To determine the optimal optimization parameters, 
e.g. tolerances and polynomial index sets, we use 
K-fold cross-validation techniques. 

•  K-fold cross validation separates the data into 
training and test sets. 
1.  One performs the optimization on the training 

set and then evaluates the performance on the 
testing set.  

2.  The optimal parameters are chosen so that they  
minimize the errors for the test set, i.e. the cross 
validation error.  

Test Function: 

•  20-fold Cross validation error 
for different tolerance levels for 
a five-dimensional PCE. The 
oracle is the true error for the 
OMP solution at each tolerance 
level. We are interested in 
tolerance with the minimum 
cross validation error.  

•  We use cross validation to find the optimal set of index sets 
and tolerance levels for dimensions 2 (left) and 5 (right).  

•  For each optimal set, we compute the error in the polynomial 
approximation using coefficients calculated via OMP as a 
function of the number of polynomial terms.  

•  We can also  perform cross validation over different index sets 
of polynomials. From left to right, we have q = 1, .8, .6 and .4 
all (from left to right) with d = 3 and  

•  Basis Pursuit (BP) 

•  Basis Pursuit Denoising (BPDN) 

•  Orthogonal Matching Pursuit (OMP) 

 
 
•  Least Angle Regression (LARS) 
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1.1 Compressed sensing methods

Various methods can be employed to solve (1). The relative accuracy of each
method is problem dependent. Traditionally, the most frequently used method
has been least squares regression. However when A is under-determined, min-
imizing the residual with respect to the `2 norm typically produces poor solu-
tions. Compressed sensing methods have been successfully used to address this
limitation [1, 7]. Such methods attempt to only identify the elements of the
coe�cient vector ↵ with the largest magnitude and enforce as many elements
as possible to be zero. Such solutions are often called sparse solutions. Dakota
provides algorithms that solve the following formulations:

• Basis Pursuit (BP) [4]

↵ = arg min k↵k`1 such that A↵ = f (2)

The BP solution is obtained in Dakota, by transforming (2) to a lin-
ear program which is then solved using the primal-dual interior-point
method [3, 4].
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• Basis Pursuit DeNoising (BPDN) [4].

↵ = arg min k↵k`1 such that kA↵� fk`2  " (3)

The BPDN solution is computed in Dakota by transforming (3) to a
quadratic cone problem which is solved using the log-barrier Newton
method [3, 4]. When the matrix A is not over-determined the BP and
BPDN solvers used in Dakota will not return a solution. In such situa-
tions these methods simply return the least squares solution.

• Orthogonal Matching Pursuit (OMP) [5],

↵ = arg min k↵k`0 such that kA↵� fk`2  " (4)

OMP is a heuristic method which greedily finds an approximation to (4).
In contrast to the aforementioned techniques for solving BP and BPDN,
which minimize an objective function, OMP constructs a sparse solu-
tion by iteratively building up an approximation of the solution vector
↵. The vector is approximated as a linear combination of a subset of ac-
tive columns of A. The active set of columns is built column by column,
in a greedy fashion, such that at each iteration the inactive column with
the highest correlation (inner product) with the current residual is added.

• Least Angle Regression (LARS) [8] and Least Absolute Shrinkage and
Selection Operator (LASSO) [12]

↵ = arg min kA↵� fk2`2 such thatk↵k`1  ⌧ (5)

A greedy solution can be found to (5) using the LARS algorithm. Alterna-
tively, with only a small modification, one can provide a rigorous solution
to this global optimization problem, which we refer to as the LASSO solu-
tion. Such an approach is identical to the homotopy algorithm of Osborne
et al [11]. It is interesting to note that Efron [8] experimentally observed
that the basic, faster LARS procedure is often identical to the LASSO
solution.

The LARS algorithm is similar to OMP. LARS again maintains an ac-
tive set of columns and again builds this set by adding the column with
the largest correlation with the residual to the current residual. However,
unlike OMP, LARS solves a penalized least squares problem at each step
taking a step along an equiangular direction, that is, a direction having
equal angles with the vectors in the active set. LARS and OMP do not
allow a column (PCE basis) to leave the active set. However if this re-
striction is removed from LARS (it cannot be from OMP) the resulting
algorithm can provably solve (5) and generates the LASSO solution.

OMP and LARS add a PCE basis one step at a time. If ↵ contains only
k non-zero terms then these methods will only take k-steps. The homotopy
version of LARS also adds only basis at each step, however it can also remove
bases, and thus can take more than k steps. For some problems, the LARS
and homotopy solutions will coincide. Each step of these algorithm provides a
possible estimation of the PCE coe�cients. However, without knowledge of the
target function, there is no easy way to estimate which coe�cient vector is best.
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Figure 1: Bridging provably convergent `1 minimization algorithms and greedy
algorithms such as OMP. (1) Homotopy provably solves `1 minimization prob-
lems [8]. (2) LARS is obtained from homotopy by removing the sign constraint
check. (3) OMP and LARS are similar in structure, the only di↵erence be-
ing that OMP solves a least-squares problem at each iteration, whereas LARS
solves a linearly penalized least-squares problem. Figure and caption based
upon Figure 1 in [6].

With some additional computational e↵ort (which will likely be minor to the
cost of obtaining model simulations), cross validation can be used to choose an
appropriate coe�cient vector.

1.2 Hyperbolic polynomial chaos expansions

Total degree polynomials can be restrictive, especially in high dimension. Specif-
ically

card Ad
p,1 ⌘ P =

✓
d+ p

d

◆

which grows rapidly with dimension. Alternative basis sets can be used to give
less importance to interactions in a function. Decreasing q < 1 results in less
basis terms involving multiple active dimensions. Setting q < 1 allows one
to capture high degree polynomial terms in low dimensional projections whilst
discarding possibly unimportant interaction terms that would be present using
a total degree polynomial. Examples of possible index sets in three dimensions
are shown in Figure 1.2.

It turns out that considering these other types of PCE truncations can be
useful for improving the performance of compressive sensing methods. See the
results.

2 Numerical Example

As the first step towards investigating the numerical properties of the Gaus-
sian Process models and Polynomial Chaos Expansions, consider the following
functions from the Genz function set [9]

fOS(x) = cos

 
�

dX
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ci ⇠i

!
, ⇠ 2 [0, 1]d

The coe�cients ci can be used to control the e↵ective dimensionality and the
variability of these functions. Here we will examine performance using
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