
0 512 1024 1536 2048 2560 3072 3584 4096 4608
Titan Nodes (GPUs)

0

50

100

150

200

250

300

350

400

450

TF
LO

PS

BiCGStab: 723x256
DD+GCR: 723x256
BiCGStab: 963x256
DD+GCR: 963x256

Strong Scaling, QUDA+Chroma+QDP-JIT(PTX)

B. Joo, F. Winter (JLab), M. Clark (NVIDIA)

Porting Lattice QCD Calculations to Novel Architectures
Balint Joo, Frank Winter, Jefferson Lab, for the USQCD Collaboration

Computing Properties of Hadrons, Nuclei and Nuclear Matter from Quantum Chromodynamics
bjoo@jlab.org, fwinter@jlab.org

QDP-JIT and QUDA: Enabling Chroma
on GPU Based Leadership Architectures
The Chroma software system is the standard workhorse of the gauge generation phase of
LQCD calculations in Cold Nuclear Physics on leadership class systems such as OLCF
Titan, which feature GPU accelerated nodes. Chroma has long enjoyed accelerated solvers
utilizing libraries such as QUDA. Gauge generation, however, requires the whole application
to be accelerated, to avoid Amdahl’s Law effects in parts of the code outside of QUDA.

Single node performance of QDP-JIT on NVIDIA K20x GPUs for some test expressions.
Memory B/W is saturated at around 150-160 GF or about 80% of peak. Problems smaller
than 124-144 sites are too small to saturate the B/W.

Strong Scaling of HMC Gauge Generation on Titan
using the CPU or the GPUs with QDP-JIT and QUDA.
Substantial acceleration is reached, however the
strong scaling behaviour is worse than for the CPU.
We attribute this in part to PCIe bottlenecks and in
part to entering into the “shoulder region” where the
local volume per GPU becomes small

Optimizing for Xeon Phi

Good Mem B/W
region

shoulder

Strong Scaling of GCR Solver on Titan, using larger
volumes. Scaling Clearly improves with growing volume.
The performance of the DD+GCR algorithm at 2304 GPUs
grows by nearly 2x going from a volume of 723x256 to
963x256 sites (a growth in the volume of 2.37x)

Lo
w

er
 is

 b
et

te
r!

H
ig

he
r i

s
be

tte
r!

QDP-JIT is an implementation of the QDP++ layer on which Chroma is built. QDP++
expression templates are compiled into code generators which generate CUDA-PTX kernels
for the expressions when first run; at which point grid and block dimensions are autotuned.
QDP-JIT features a memory manager which can page data between host and device
memories automatically and rearrange data to the most optimal layout (e.g. for coalesced
access) without the need to instrument the large Chroma code with #pragma annotations

!"
#$ ""

%&
$

&"
'(
$

)!
''
$

)#
()
$

&&
%"
$

*(
'(
$

+(
+!
$

($

"((($

&((($

)((($

*((($

+((($

!((($

&$ *$ %$ "!$)&$

,-./01$23$4025$678$-589:$

;<)&=)&=)&=&+!$

;<*%=*%=*%=&+!$

!"
"# $%

&#

'"
(&
#

%"
)$
#

%$
!!
#

'*
*&
#

%&
!"
#

)&
)"
#

(#

"((#

'(((#

'"((#

%(((#

%"((#

)(((#

)"((#

!(((#

!"((#

%# !# $# '*#)%#

+,-./0#12#3/14#567#8479:#

;<)%=)%=)%=%"*#

;<!$=!$=!$=%"*#

!
"
!
#

!
"
!
#

"
"
$
#

"
%
"
#

"
$
%
#

"
&
'
#

!
(
(
#

"
)
)
#

!
"
"
#

!
"
*
#

"
$
!
#

"
&
'
#

"
)
&
#

*
!
&
#

!
(
%
#

"
)
!
#

!
!
'
#

!
!
'
#

"
+
'
#

"
%
!
#

"
*
'
#

*
+
!
#

!
'
$
#

"
"
(
#

!
!
&
#

!
!
&
#

"
!
%
#

"
(
+
#

"
$
"
#

*
+
&
#

!
(
!
#

"
$
!
#

!
"
"
#

!
"
"
#

"
*
(
#

"
&
)
#

"
)
(
#

*
"
+
#

!
(
"
#

"
$
$
#

+#

)+#

!++#

!)+#

"++#

")+#

*++#

,-./01234435# 6/01234435# ,-./01234435# 6/01234435# ,-./01234435# 6/01234435# ,-./01234435# 6/01234435#

7-839:#;3/-:##<)="'(+#>?@A=<BC# 7-839:#;3/-#BDEF#>G@6C#)!!+B# 7-839:#;3/-#BDEF#>G@6C#

A!BHI=%!!+B#

@J7K7L:#G31932#G"+0#

ME94/-#K49N4D#

JO"$P"$P"$P!"(## JO*"P*"P*"P!"(# JO$+P$+P$+P&'# JO$(P$(P"$P'$# JO*"P$+P"$P&'#

!
"
#

!
$
#

%
&
'
%
!
$
#

%
(
(
#

'
%
$
#

%
)
!
#

'
%
'
#

!
)
#

!
)
#

%
(
&
'
%
%
#

'
*
"
#

'
+
$
#

%
)
(
#

'
%
%
#

!
+
#

!
+
#

%
)
"
#

%
!
&
#

%
(
)
#

'
%
!
#

%
!
$
#

!
$
#

!
$
#

%
&
'
#

'
*
$
#

%
!
'
#

'
'
!
#

%
)
"
#

'
*
"
#

!
&
#

!
&
#

%
(
$
#

'
%
$
#

'
*
'
#

'
+
&
#

%
)
"
#

'
*
)
#

*#

$*#

%**#

%$*#

'**#

'$*#

,-./01234435# 6/01234435# ,-./01234435# 6/01234435# ,-./01234435# 6/01234435# ,-./01234435# 6/01234435#

7-839:#;3/-:##<$=')(*#>?@A=<BC# 7-839:#;3/-#BDEF#>G@6C#$%%*B# 7-839:#;3/-#BDEF#>G@6C#

A%BHI=&%%*B#

@J7K7L#G31932#G'*#

B23./-5EM/-35#6N#

JO'"P'"P'"P%'(## JO+'P+'P+'P%'(# JO"*P"*P"*P!)# JO"(P"(P'"P)"# JO+'P"*P'"P!)#

G
FL

O
P

S

G
FL

O
P

S

G
FL

O
P

S

G
FL

O
P

S

Wilson Dslash Operator (single prec.) Preconditioned CG (single prec.)

Wilson Dslash Operator (single prec.) Preconditioned CG (single prec.)

Performance of LQCD Kernels on Single Devices compared with performance of QUDA on Tesla K20 GPUs. The CPU performances are also
excellent. (B. Joo, D. Kalamkar, K. Vaidyanathan, M. Smelyanskiy, K. Pamnani, V. Lee, P. Dubey, W. Watson, ISC 2013, LNCS 7904, pp40-54, 2013)

Performance of LQCD Kernels on Multiple Xeon Phi nodes of the Intel Endeavor Cluster, using an MPI communications Proxy (B. Joo, D.
Kalamkar, K. Vaidyanathan, M. Smelyanskiy, K. Pamnani, V. Lee, P. Dubey, W. Watson, ISC 2013, LNCS 7904, pp40-54, 2013)

Conclusions

We have been working in close collaboration with Intel Parallel Labs to develop high performance
implementations of Lattice QCD kernels for Intel Xeon Phi. To achieve good performance requires
careful attention to vectorization, cache-blocking, and mapping threads to blocks in a load balanced
way. We wrote a code-generator to abstract vector intrinsics and to allow us to vary the spacing of
prefetch instructions. The multi-node code uses an MPI Proxy to pick the optimal path betwen
device nodes.The framework has been retargeted to AVX on Intel Sandy Bridge and should be
straightforward to apply to other multi-core, cache and vector based architectures such as BG/Q.

QDP-JIT will allow effective exploitation of accelerated leadership resources, and forms the basis of
our work in partnership with the SUPER SciDAC Institute to create a Domain Specific Compilation
Framework for lattice QCD. The lessons learned can be applied to other domain specific frameworks
using expression templates. Our work with Xeon Phi seeks to discover approaches for highly
performant code on this architecture, targeting large scale Xeon Phi resources (e.g. Stampede) and
to quantify the “Ninja Gap” between optimized and “regular” code to help design future compilers.
Finally, the micro-benchmarks developed through our collaboration with Intel can be used to stress
and evaluate proposed architectural changes on future version of Xeon Phi

mailto:bjoo@jlab.org
mailto:bjoo@jlab.org

