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FASTMath Iterative Solver Technologies

Nonlinear, linear and eigenvalue iterative solvers are the key computational kernel in many application’s simulations code. FASTMath has
a robust research program in developing, implementing, and supporting a variety of iterative solvers for massively parallel computing

systems.

Reducing Communication in Algebraic Multigrid

Objectives

Algebraic multigrid (AMG) methods have shown excellent weak scalability on distributed-
memory architectures, however the increasing fill-in and communication complexities on
coarser levels have led to decreased performance on modern multicore architectures.

The development of new methods with reduced communication is essential.

Additive AMG Variants

Classical additive AMG methods have improved communication complexities per cycle, but
converge significantly slower than multiplicative AMG. Mult-additive AMG, a new additive
variant with reduced communication, in which the interpolation operator is replaced by a
smoothed truncated prolongator, converges significantly faster than additive AMG.

Further reductions in communication can be achieved by omitting most of the smoothing
portion in the mult-additive V-cycle, leading to a simplified mult-additive variant.
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Non-Galerkin AMG

Computing many eigenpairs of sparse matrices

Application driver:

Material science and chemistry, especially excited state calculation

Limitations of the existing solver:
« Limited amount of parallelism in a standard Krylov subspace method (e.g.
PARPACK)

« Rayleigh-Ritz (RR) procedure often the bottleneck

Alternative strategies:

1. Spectrum slicing
«  More parallelism, no big RR calculation, but
«  Need to estimate eigenvalue distribution
«  Compute interior eigenvalues
QO  Polynomial filtering (See Chelikowsy poster)
Q  Shift-invert Lanczos

O  Contour integral method
Q  Jacobi-Davidson
Manage/optimize task distribution/load balancing

The effect of the size of each slice Multiple shift-invert scalability

Parallel AMG Based on E Minimizatio |

Find P= argminEHﬂ Hx
s.t. sparsity(P) E S
N, =PN,

 Promising initial weak scaling

+ Implemented in Trilinos/MueLu
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« Serial runs show benefit
in simulations with
multiple solves

Ice Sheet Model (75x75x25)
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Source: LLNL Trilinos Team

Broad Accelerator Support via Open

Porting our existing CUDA-based operations to OpenCL allows for leveraging the performance of
both current and future hardware from different vendors. By supplementing vendor-provided
BLAS implementation by domain-specific kernels, high performance is obtained.
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More Information: http://www.fastmath-scidac.org or contact Lori Diachin, LLNL, diachin2@IInl.gov, 925-422-7130
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