
FASTMath Iterative Solver Technologies

Nonlinear,	 	 linear	 and	 eigenvalue	 	 itera0ve	 solvers	 are	 the	 key	 computa0onal	 kernel	 in	 many	 applica0on’s	 simula0ons	 code.	 FASTMath	 has	
a	 robust	 research	 program	 in	 developing,	 implemen0ng,	 and	 suppor0ng	 a	 variety	 of	 itera0ve	 solvers	 for	 massively	 parallel	 compu0ng	
systems.	 	

More Information: http://www.fastmath-scidac.org or contact Lori Diachin, LLNL, diachin2@llnl.gov, 925-422-7130

.	

Porting our existing CUDA-based operations to OpenCL allows for leveraging the performance of
both current and future hardware from different vendors. By supplementing vendor-provided
BLAS implementation by domain-specific kernels, high performance is obtained.

L

Broad Accelerator Support via OpenCL

Source: ANL PETSc Team

Reducing Communication in Algebraic Multigrid

Objectives

§  Algebraic multigrid (AMG) methods have shown excellent weak scalability on distributed-
memory architectures, however the increasing fill-in and communication complexities on
coarser levels have led to decreased performance on modern multicore architectures.

§  The development of new methods with reduced communication is essential.

§  Classical additive AMG methods have improved communication complexities per cycle, but

converge significantly slower than multiplicative AMG. Mult-additive AMG, a new additive
variant with reduced communication, in which the interpolation operator is replaced by a
smoothed truncated prolongator, converges significantly faster than additive AMG.

§  Further reductions in communication can be achieved by omitting most of the smoothing
portion in the mult-additive V-cycle, leading to a simplified mult-additive variant.

§  Solve times on a Linux cluster with
Infiniband fat tree network
for an unstructured 3D problem
with jumps on a sphere

- multiplicative AMG
- mult-additive AMG.
- simplified mult-additive AMG
(all methods used L1-Jacobi smoothing)

Additive AMG Variants

0	

1	

2	

3	

4	

5	

6	

64	 640	

se
co
nd

s	

no	 of	 cores	

§  Standard AMG suffers from fill-in on coarse-levels, which in turn induces increasing
communication complexities at large scale.

§  This project builds a mathematical and algorithmic
framework to reduce this fill-in and hence also
reduce parallel communication and runtime

§  The approach safely eliminates matrix entries in
the standard Galerkin coarse-level matrix to yield
a non-Galerkin AMG method, while
preserving important near null-space
components to maintain
good AMG convergence.

§  Parallel test uses a set of best
practices AMG parameters for the
Galerkin AMG data, and then turns
on non-Galerkin for a comparison.
§  Speedup is significant (~50%)

and grows with core count.
§  Test uses a Linux cluster with

Infiniband fat tree network.

Non-Galerkin AMG

101 102 103 104

Number of Cores

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Sp
ee

du
p

=
G

al
er

ki
n/

N
on

-G
al

er
ki

n

101 102 103 1040

5

10

15

20

T
im

e

Non-Galerkin Time

Galerkin Time

Speedup

Non-Galerkin (s)

Number of Cores

Sp
ee

d
U

p

Galerkin AMG (s)

Ti
m

e
(s

) Speedup

Sparsifying a coarse-level matrix

Parallel AMG Based on Energy Minimization

Find P = argmin Pk∑ X

 s.t. sparsity(P)∈ S
 N f = PNc

24 192 648 1536 3000 5184 8232
0

0.5

1

1.5

2

2.5

3

3.5

Setup
Solution

Step Emin(6) Emin(1) Emin(6,1)
2 17 30 17
8 16 32 17

12 17 33 18
18 17 36 18
23 17 36 18
28 17 34 18

Ice Sheet Model (75x75x25)

•  Promising initial weak scaling
•  Serial runs show benefit

in simulations with
multiple solves

•  Implemented in Trilinos/MueLu

3D Linear Elasticity

Cores

Re
la

tiv
e

Ti
m

e

Computing many eigenpairs of sparse matrices

Application driver:
Material science and chemistry, especially excited state calculation

Limitations of the existing solver:
•  Limited amount of parallelism in a standard Krylov subspace method (e.g.

PARPACK)

•  Rayleigh-Ritz (RR) procedure often the bottleneck

Alternative strategies:
1.  Spectrum slicing

•  More parallelism, no big RR calculation, but

•  Need to estimate eigenvalue distribution

•  Compute interior eigenvalues

q  Polynomial filtering (See Chelikowsy poster)

q  Shift-invert Lanczos

q  Contour integral method

q  Jacobi-Davidson

•  Manage/optimize task distribution/load balancing

2.  Penalized trace minimization
•  formulation

•  Algorithm characteristic

•  Preconditioned steepest descent

•  Barzilai Borwein line search

•  Few RR calculation

•  Block computation, more GEMMs

𝜆

0"

5"

10"

15"

20"

25"

30"

35"

12
8x
4"

85
x6
"
64
x8
"

51
x1
0"

42
x1
2"

32
x1
6"

25
x2
0"

21
x2
4"

16
x3
2"

12
x4
2"

10
x4
8"

8x
64
"

w
al
l.c
lo
ck
"2
m
e"
(in

"se
co
nd

s)
"

#"intervals"x"#"processors"per"interval"="512"""

max.avg"solve"
tsolve"
Bactor"

The effect of the size of each slice

large small

Multiple shift-invert scalability

m𝑖𝑛┬𝑋  𝑋↑𝑇 𝐴𝑋+𝜇(𝑋↑𝑇 𝑋−𝐼) 

•  𝑅↓𝑗 =𝐴𝑋↓𝑗 +𝜇𝑋↓𝑗  (𝑋↓𝑗↑𝑇 𝑋↓𝑗 −𝐼)

•  𝑋↓𝑗+1 = 𝑋↓𝑗 −𝛼𝑀↑−1 𝑅↓𝑗 , where 𝛼=
trace(Δ𝑅↓𝑗↑𝑇 Δ𝑋↓𝑗 )/‖Δ𝑅↓𝑗 ‖↓𝐹↑2  

Performance
profile

Scalability

Source: LLNL Trilinos Team

Source: LBNL Arpack Team
Source: LLNL hypre Team

