
FASTMath Iterative Solver Technologies 

Nonlinear,	
  	
  linear	
  and	
  eigenvalue	
  	
  itera0ve	
  solvers	
  are	
  the	
  key	
  computa0onal	
  kernel	
  in	
  many	
  applica0on’s	
  simula0ons	
  code.	
  FASTMath	
  has	
  
a	
  robust	
  research	
  program	
  in	
  developing,	
  implemen0ng,	
  and	
  suppor0ng	
  a	
  variety	
  of	
  itera0ve	
  solvers	
  for	
  massively	
  parallel	
  compu0ng	
  
systems.	
  	
  

More Information: http://www.fastmath-scidac.org or contact Lori Diachin, LLNL, diachin2@llnl.gov, 925-422-7130 
       

.	
  

 

Porting our existing CUDA-based operations to OpenCL allows for leveraging the performance of 
both current and future hardware from different vendors. By supplementing vendor-provided 
BLAS implementation by domain-specific kernels, high performance is obtained. 
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Broad Accelerator Support via OpenCL 

Source: ANL PETSc Team 

Reducing Communication in Algebraic Multigrid 

Objectives 

§  Algebraic multigrid (AMG) methods have shown excellent weak scalability on distributed-
memory architectures, however the increasing fill-in and communication complexities on 
coarser levels have led to decreased performance on modern multicore architectures. 

§  The development of new methods with reduced communication is essential. 
 

 
 
§  Classical additive AMG methods have improved communication complexities per cycle, but  

converge significantly slower than multiplicative AMG. Mult-additive AMG, a new additive 
variant with reduced communication, in which the interpolation operator is replaced by a 
smoothed truncated prolongator, converges significantly faster than additive AMG. 

§  Further reductions in communication can be achieved by omitting most of the smoothing 
portion in the mult-additive V-cycle, leading to a simplified mult-additive variant. 

§  Solve times on a Linux cluster with 
Infiniband fat tree network 
for an unstructured 3D problem  
with jumps on a sphere 
 
 
 
 
 
- multiplicative AMG 
- mult-additive AMG. 
- simplified mult-additive AMG 
(all methods used L1-Jacobi smoothing) 

Additive AMG Variants 
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§  Standard AMG suffers from fill-in on coarse-levels, which in turn induces increasing 
communication complexities at large scale. 

§  This project builds a mathematical and algorithmic  
framework to reduce this fill-in and hence also 
reduce parallel communication and runtime 

§  The approach safely eliminates matrix entries in  
the standard Galerkin coarse-level matrix to yield  
a non-Galerkin AMG method, while  
preserving important near null-space  
components to maintain  
good AMG convergence. 

§  Parallel test uses a set of best  
practices AMG parameters for the 
Galerkin AMG data, and then turns  
on non-Galerkin for a comparison. 
§  Speedup is significant (~50%) 

and grows with core count. 
§  Test uses a Linux cluster with  

Infiniband fat tree network. 

Non-Galerkin AMG 
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Sparsifying a coarse-level matrix 

Parallel AMG Based on Energy Minimization 

Find  P = argmin Pk∑ X

    s.t. sparsity(P)∈ S
         N f = PNc

24 192 648 1536 3000 5184 8232
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Step Emin(6) Emin(1) Emin(6,1) 
2 17 30 17 
8 16 32 17 

12 17 33 18 
18 17 36 18 
23 17 36 18 
28 17 34 18 

Ice Sheet Model (75x75x25) 

•  Promising initial weak scaling 
•  Serial runs show benefit 

in simulations with 
multiple solves 

•  Implemented in Trilinos/MueLu 

3D Linear Elasticity 
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Computing many eigenpairs of sparse matrices 

Application driver: 
Material science and  chemistry, especially excited state calculation 

Limitations of the existing solver: 
•  Limited amount of parallelism in a standard Krylov subspace method (e.g. 

PARPACK) 

•  Rayleigh-Ritz (RR) procedure often the bottleneck 

Alternative strategies: 
1.  Spectrum slicing 

•  More parallelism, no big RR calculation, but 

•  Need to estimate eigenvalue distribution   

•  Compute interior eigenvalues 

q  Polynomial filtering (See Chelikowsy poster) 

q  Shift-invert  Lanczos 

q  Contour integral method 

q  Jacobi-Davidson 

•  Manage/optimize task distribution/load balancing 

2.  Penalized trace minimization 
•  formulation 

•  Algorithm characteristic 

•  Preconditioned steepest descent  

•  Barzilai Borwein line search 

•  Few RR calculation 

•  Block computation, more  GEMMs 
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The effect of the size of each slice 

large small 

Multiple shift-invert  scalability 

​​m𝑖𝑛┬𝑋  ⁠​𝑋↑𝑇 𝐴𝑋+𝜇( ​𝑋↑𝑇 𝑋−𝐼)  

•  ​𝑅↓𝑗 =𝐴​𝑋↓𝑗 +𝜇​𝑋↓𝑗   (​𝑋↓𝑗↑𝑇 ​𝑋↓𝑗 −𝐼)


•  ​𝑋↓𝑗+1 = ​𝑋↓𝑗 −𝛼​𝑀↑−1 ​𝑅↓𝑗 , where 𝛼= ​
trace(Δ​𝑅↓𝑗↑𝑇 Δ​𝑋↓𝑗 )/​‖Δ​𝑅↓𝑗 ‖↓𝐹↑2   

Performance 
profile 

Scalability 

Source: LLNL Trilinos Team 

Source: LBNL Arpack Team 
Source: LLNL hypre Team 


