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Lattice QCD on the BGQ: Achieving 1 PFlops Production Jobs
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QCD + Electroweak Interactions Produce Particle Decays
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Numerical Path Integral Including the Fermionic Effects of Quarks

•	 Require positive definite measure for Monte Carlo 
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•	 From (A, Φ, Π)ini use molecular dynamics to move to (A, Φ, Π)fin
•	 Then do Monte Carlo accept/reject

•	 Rational Hybrid Monte Carlo of Clark and Kennedy approximates 

M1/2
Φ =

(

α0 +

n∑

k=1

αk

M + βk

)

Φ

•	 Use multimass Krylov space solver (CG) to do all poles at once

•	 QCD Simulations are done in a four (or five) dimensional box, with O(50-100) grid 
points in each dimension

•	 Sample the phase space of the system via Monte Carlo, following the Euclidean space 
Feynamn path integral.  The continuum, Minkowski space path integral is 
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•	 Only parameters are an input coupling and three (or four) light quark masses.

•	 Gluon self-interactions yields a very non-linear system.
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Computers

Columbia/RBRC
QCDSP 1998-2005
0.050 GFlops/node

Columbia/RBRC/
UKQCD
QCDOC 2005-2011
0.8 GFlops/node

IBM BGL 2005-2013
2.8 GFlops/node

IBM BGP 2007-
13.6 GFlops/node

IBM BGQ 2012-
200 GFlops/node

RBC/UKQCD have production jobs on the Argonne ALCF BGQ that sustain 1 PFlops on 
32 racks = 32k nodes = 0.5 M cores.

This performance comes from very carefully tuned assembly code on BGQ, produced by 
Peter Boyle, using his BAGEL code generator

Algorithms for Gauge Field Production

Algorithms for Measurements

118 CHAPTER 6. KL3 CALCULATION ON THE LATTICE

usually the vector ρ meson,

ZV =
〈Vµ(x) · q(0)γµq(0)〉
〈Vµ(x) · q(0)γµq(0)〉

. (6.34)

The signal to noise ratio of this quantity decays rapidly as the vector current moves away

from the ρ source, since ρ is heavy on the lattice.

A better but more expensive method to compute the vector current renormalization

factor involves using the zero momentum π −→ π matrix element

∑

x

〈π(tπ)Vµ(x, t)π(0)〉 =
|Zπ|2

2mπ

1

ZV

, 0 < t < tπ. (6.35)

Where both the initial and final pions are static on the lattice. We use wall source propagators

to generate both the initial and final pions. The setup is shown in the right panel of figure

6.1. The apparent advantage is that this matrix element maintains good signal to noise ratio

even when the 2 pions are separated far away. This is because a zero momentum pion is

the lightest particle on the lattice, consequently the signal to noise ratio does not degrade

when the separation between the 2 pions becomes larger. This correlation function is more

expensive to calculate, requiring light quark propagators computed at both t = 0 and t = tπ.

However, due to the vastly better signal to noise ratio, it is the preferred method we use

in the Kl3 calculation on the 483 × 96 (5.5fm, 140MeV) and 643 × 128 (5.5fm, 140MeV)

ensembles.

K π

pπ(twisted)s
γµ

π π

γµ

Figure 6.1: Left: Kl3 matrix element with twisted pion. Right: Computing the vector
current renormalization factor ZV using the π to π matrix element.

128 CHAPTER 7. SIMULATION RESULTS
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Figure 7.4: Kl3 contraction 〈π−(T + τ) | s(t+ τ)γ3,0u(t+ τ) |K0(τ)〉. Averaged over 64
possible τ values. Top left: operator sγ3u with twisted pion. Top right: operator sγ3u
with twisted kaon. Bottom left: operator sγ0u with twisted pion. Bottom right: operator
sγ0u with twisted kaon.
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•	 Time translated the n-point function, on a fixed background gauge field, are 
sufficiently decorrelated (independent enough) to make them worth calculating

•	 This means many solutions of the Dirac equation D[Uμ] Ψ = s for fixed Uμ

•	 Calculating eigenvectors of D[Uμ] with small eigenvalues (low-modes) speeds up 
subsequent solves.  Can be done with EigCG or Lanczos algorithms

•	 Alternatives for Wilson fermions are domain decomposition and multigrid, giving 
similar speed-up with smaller memory requirements.

•	 Further improvement from all-mode-averaging of Blum, Izubuchi and Shintani 

*	 Separates measurements into expensive parts, with small statistical errors after a 
few measurements, and inexpensive parts, where many measurements are needed.

•	 These improvements make measurements ~ 10× faster than a year ago.

*	 This particular method takes substantial computer memory O(100 TBytes)

*	 No checkpointing is done, so computer must work reliabilty for duration of job

*	 Our smaller volume simulation takes 6 days on 1 rack of BGQ

*	 Our larger volume simulations take 6 hours on 32 BGQ racks at 1 PFlops.

*	 This speed-up was accomplished through the work of Hantao Yin at Columbia.

•	 Boyle has developed a Heirarchically Deflated Conjugate Gradient (HDCG) to mark-
edly decrease the memory footprint, since eigenvectors are not needed, while also 
needing fewer iterations to converge.   Production level testing is currently underway 
by Chulwoo Jung of BNL

Major Development:  Ensembles with Physical Quark Masses

however, the leading finite-volume corrections are exponen-
tially small in the box size and not polynomially and can
therefore be made sufficiently small in practice by increasing
the volume (Luscher, 1986a). These finite-volume effects are
discussed in Sec. IV.C.1. Resonant states, on the other hand,
are embedded into a continuum of scattering states at infinite
volume. In finite volume these levels become discrete and
carry a strong volume dependence. Consequently the leading
finite-volume effects on resonant states are of a different
origin and are discussed separately in Sec. IV.C.2.

Finally we mention that fixing the global topological
charge in QCD is a restriction that becomes irrelevant in
the infinite volume limit, too. For this reason lattice QCD
calculations in a fixed topological sector may be viewed as
introducing an additional third type of finite-volume correc-
tions (Brower et al., 2003; Aoki et al., 2007). Since currently
this technique has not been used in any work on light hadron
spectroscopy, we will not discuss it any further.

1. Finite-volume effects for stable particles

In an interacting field theory, the properties of a particle in
a finite box are affected by mirror charge effects. For hadron
spectroscopy this entails that all hadron masses in a finite box
deviate from their infinite volume value with a leading
contribution originating from the pion warping around one
spatial lattice dimension.15 A generic expectation for the
finite-volume correction to any hadron mass M in an L3 � T
box is therefore16

1� ML

M1
/ e�M�L: (153)

As Luscher (1986a) demonstrated, there is a relation be-
tween the Euclidean finite-volume mass correction of a had-
ron P and the forward �P scattering amplitude in Minkowski
space. Concentrating on the case where a single propagator
receives finite-volume corrections, he obtained an explicit
expression for the leading term in an expansion for asymptoti-
cally large L. Using an alternative approach, Gasser and
Leutwyler (1987a, 1987b, 1988) incorporated finite-volume
effects into chiral perturbation theory. They demonstrated
that the finite volume affects only the propagators and that
it can be accounted for by simply replacing the momentum
integration by a summation over the allowed discrete mo-
menta pi ¼ 2�ni=L.

Expanding the relation of Luscher (1986a) to include
subleading terms in asymptotic L and using �PT input for
the scattering amplitudes, Colangelo and Durr (2004) and
Colangelo, Durr, and Haefeli (2005) combined the two ap-
proaches mentioned above for the case of pseudoscalar me-
sons. A similar expansion for baryons was also pioneered
(Colangelo, Fuhrer, and Lanz, 2010).

From a practical point of view these results imply that there
is a safe asymptotic region of relatively large lattice volumes
where these finite size effects are exponentially small and in
addition can be systematically corrected for. As a rule of
thumb for lattice computations with pion masses above
�300 MeV, lattices withM�L > 4 are considered safe while
those with m�L< 3 are widely affected by finite-volume
corrections. For a more quantitative statement, Fig. 13 shows
a plot of box size L vs pion mass M� where regions are
identified that according to Colangelo, Durr, and Haefeli
(2005) imply the finite-volume effect on the pion mass to
be <1%, <0:3%, and <0:1%, respectively. On top of these
regions parameters of current or recent lattice computations
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FIG. 12 (color online). The landscape of recent dynamical fermion simulations projected to the M� vs a plane. The cross marks the

physical point while shaded areas with increasingly light shade indicate physically more desirable regions of parameter space. Data points are

taken from the following references: ETMC’09(2) (Blossier et al., 2009); ETMC’10ð2þ 1þ 1Þ (Baron et al., 2010a); MILC’10 (Bazavov

et al., 2010a); QCDSF’10(2) (Schierholz, 2010); QCDSF-UKQCD’10 (Bietenholz et al., 2010a); BMWc’08 (Durr et al., 2008); BMWc’10

(Durr et al., 2011c); PACS-CS’09 (Aoki et al., 2009, 2010); RBC-UKQCD’10 (Mawhinney, 2010; Aoki et al., 2011); JLQCD/TWQCD’09

(Noaki et al., 2009); HSC’10 (Lin et al., 2009); BGR’10(2) (Engel et al., 2010); and CLS’10(2) (Brandt et al., 2010). All ensembles are

from Nf ¼ 2þ 1 simulations except explicitly noted otherwise. For staggered, respectively, twisted mass ensembles, the Goldstone,

respectively, charged pion masses are plotted.

15Alternatively in the momentum space view these effects may be

considered as consequences of the discreteness of the momenta in a

finite box.
16For the case of smaller volumes, see also Fukugita et al. (1992).

They argue that the dominant (polynomial) finite size effect is due

to the truncation of a hadrons wave function.
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different lattice spacings, a � 0:06, 0.09, 0.12, and
0.15 fm, in order to control extrapolations to the continuum
limit. We include up, down, strange, and charm sea quarks.
For most ensembles, the masses of the strange and charm
quarks, ms and mc, respectively, are fixed at their physical
values. For these ensembles, the up and down quark masses
are taken to be degenerate with a common mass ml, which
has a negligible effect (< 1%) on isospin-averaged quan-
tities. We are generating configurations with three values of
the light quark mass: ml ¼ ms=5, ms=10, and the value
such that the Goldstone pion mass is as close as possible to
the physical pion mass, which is approximately ms=27.
Table I shows the current state of these ensembles. Prior to
the simulations, the lattice spacing and the physical values
of the quark masses can only be estimated. Their precise
values are outputs from the analysis described later in this
paper. Note that we have generated three ensembles with
a � 0:12 fm and ml ¼ ms=10 that differ only in their

spatial volumes. The purpose of using three different
volumes is to enable tests of finite-size effects. The factor
governing such effects, e�M�L, varies by a factor of 8 over
this range of spatial sizes, so we expect to have a sufficient
lever arm for these tests. In Table III, we compare the
values of the plaquette, the strange and light quark con-
densates, and r1=a on these three lattices. A comparison
of finite size effects for the pion and kaon masses and
leptonic decay constants on these configurations with the
predictions of chiral perturbation theory can be found
in Ref. [16].
With the HISQ action, as with less improved staggered

fermion actions, each lattice fermion species corresponds
to four ‘‘tastes’’ of fermions in the continuum limit. To
eliminate the three unwanted tastes from the quark sea, we
use the fourth-root procedure for each of the sea-quark
flavors, up, down, strange, and charm. For numerical and
theoretical arguments justifying this fourth-root procedure,
we refer the reader to Refs. [17,18].
We have also generated a limited number of ensembles

with the strange-quark mass lighter than its physical value,
because including such ensembles has proven very useful
in controlling chiral extrapolations of physical quantities.
In one of those ensembles, we also chose different values
for the two light-quark masses, up and down, to probe for
isospin-breaking effects. These ensembles are listed in
Table II.
We note that even though we are generating some

ensembles with the Goldstone pion mass at the physical
value and with the strange-quark mass near its physical
value, controlling the chiral expansion using a variety of
other ensembles with different quark masses is still very
useful for several reasons: (1) The lattice spacing and the

TABLE I. HISQ gauge configuration ensembles with strange
and charm quark masses set at or very close to their physical
values. The first column gives the lattice spacing for which we
were aiming, which in all cases turned out to be a good
approximation to the actual lattice spacing that could only be
determined after the lattices were created. The second column
gives the ratio of the simulation mass of the light quark to the
physical mass of the strange quark, the third the lattice dimen-
sions, the fourth the product of the Goldstone pion mass and the
spatial extent of the lattice, and the fifth the Goldstone pion mass
in MeV. The pion masses were converted to physical units using
the fp4s scale setting described in Sec. III. The quoted errors

include only the statistical errors on the pion mass and fp4s in

lattice units in the individual ensemble; they do not include
systematic errors such as the errors on the physical values of fp4s
in Table VII. The sixth column gives the number of equilibrated
gauge configurations. Where the sixth column is the sum of two
numbers, these are the numbers of lattices generated with the
RHMC and RHMD algorithms, respectively, as discussed in
Sec. II. We plan to save approximately 1000 configurations in
each ensemble, so those for which Nlats � 1000 are considered
to be complete.

�a (fm) ml=ms N3
s � Nt M�L M� (MeV) Nlats

0.15 1=5 163 � 48 3.78 306.9(5) 1021

0.15 1=10 243 � 48 3.99 214.5(2) 1000

0.15 1=27 323 � 48 3.30 131.0(1) 1020

0.12 1=5 243 � 64 4.54 305.3(4) 1040

0.12 1=10 243 � 64 3.22 218.1(4) 1020

0.12 1=10 323 � 64 4.29 216.9(2) 1000

0.12 1=10 403 � 64 5.36 217.0(2) 1029

0.12 1=27 483 � 64 3.88 131.7(1) 1000

0.09 1=5 323 � 96 4.50 312.7(6) 1011

0.09 1=10 483 � 96 4.71 220.3(2) 1000

0.09 1=27 643 � 96 3.66 128.2(1) 235þ 467
0.06 1=5 483 � 144 4.51 319.3(5) 1000

0.06 1=10 643 � 144 4.25 229.2(4) 435þ 227
0.06 1=27 963 � 192 3.95 135.5(2) 240

TABLE II. HISQ gauge configuration ensembles with lighter-
than-physical strange quark masses. All ensembles have a lattice
spacing of a � 0:12 fm and charm-quark mass as close as
possible to its physical value. The first two columns give the
ratio of the light quark masses to the physical strange quark
mass. (We distinguish between the masses of the two light
quarks because in the ensemble in the last row they are differ-
ent.) The third column gives the ratio of the simulation strange-
quark mass to the physical strange-quark mass, and the fourth
column shows the lattice dimensions. The fifth shows the num-
ber of equilibrated configurations.

ml1=ms ml2=ms m0
s=ms N3

s � Nt Nlats

0.10 0.10 0.10 323 � 64 1020

0.10 0.10 0.25 323 � 64 1020

0.10 0.10 0.45 323 � 64 1020

0.10 0.10 0.60 323 � 64 1020

0.25 0.25 0.25 243 � 64 1020

0.20 0.20 0.60 243 � 64 1020

0.175 0.175 0.45 323 � 64 1020

0.10 0.25 0.45 323 � 64 1020

A. BAZAVOV et al. PHYSICAL REVIEW D 87, 054505 (2013)

054505-2
2+1+1 flavors, HISQ Staggered,
MILC Phys. Rev. D87 (2013) 054505

2+1 flavors, (M)DWF
RBC and UKQCD Collaborations

Large Vol. Ensembles with Physical Quark Masses
•	 BMW Hex-smeared clover fermions

•	 MILC HISQ Staggered fermions

•	 RBC/UKQCD DWF fermions

Through advances in computer hardware and software, production lattice QCD jobs run by the RBC and UKQCD Collabora-
tions on BGQ installations are sustaining 1 PFlops.  The largest computational cost is in the solution of the Dirac equation (a lin-
ear equation) in the presence of a fixed gauge background and we use Peter Boyle's (Univ. of Edinburgh) BAGEL based solver for 
this important calculation.  Extensive multithreading via OpenMP in the rest of our code base (Chulwoo Jung, BNL and Hantao 
Yin, Columbia) has also been vital to achieving good performance.  In addition, we employ a number of new deflation and vari-
ance reduction strategies in our calculations which give a further large speed-up (~ 10×) beyond the software improvements.  With 
all of these techniques, we are able to simulate lattice QCD with physical pion masses in large volumes, of size (5.5 fm)3.  This has 
led to markedly reduced statistical and systematic errors for our results.  With these advances, as well as new theoretical ideas, we 
are now begining production calculations for kaon decay involving disconnected quark diagrams, where the signal to noise ratio is 
much worse.  These new calculations improve constraints on standard model physics.

Sequoia at LLNL

Mira at ANL

BGQ at BNL

Quantum Chromodynamics

•	 Decays of quarks via weak interactions 
predicted by Standard Model.

•	 Experiments measure decays of hadrons

•	 Standard Model quark decays involve 
elements of a 3 by 3 unitary matrix, the 
CKM matrix, described by 4 parameters

11. CKM quark-mixing matrix 1

11. THE CKM QUARK-MIXING MATRIX

Revised March 2012 by A. Ceccucci (CERN), Z. Ligeti (LBNL), and Y. Sakai (KEK).

11.1. Introduction

The masses and mixings of quarks have a common origin in the Standard Model (SM).

They arise from the Yukawa interactions with the Higgs condensate,

LY = −Y
d
ij Q

I
Li φ d

I
Rj − Y

u
ij Q

I
Li ε φ

∗
u

I
Rj + h.c., (11.1)

where Y
u,d

are 3× 3 complex matrices, φ is the Higgs field, i, j are generation labels, and

ε is the 2 × 2 antisymmetric tensor. Q
I
L are left-handed quark doublets, and d

I
R and u

I
R

are right-handed down- and up-type quark singlets, respectively, in the weak-eigenstate

basis. When φ acquires a vacuum expectation value, 〈φ〉 = (0, v/

√
2), Eq. (11.1) yields

mass terms for the quarks. The physical states are obtained by diagonalizing Y
u,d

by four unitary matrices, V
u,d
L,R, as M

f
diag = V

f
L Y

f
V

f†
R (v/

√
2), f = u, d. As a result,

the charged-current W
±

interactions couple to the physical uLj and dLk quarks with

couplings given by

−g√
2

(uL, cL, tL)γ
µ

W
+
µ VCKM




dL
sL
bL



 + h.c., VCKM ≡ V
u
L V

d
L
†

=




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



.

(11.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3 unitary matrix. It

can be parameterized by three mixing angles and the CP -violating KM phase [2]. Of

the many possible conventions, a standard choice has become [3]

VCKM =




c12c13 s12c13 s13e

−iδ

−s12c23−c12s23s13e
iδ

c12c23−s12s23s13e
iδ

s23c13

s12s23−c12c23s13e
iδ −c12s23−s12c23s13e

iδ
c23c13



 , (11.3)

where sij = sin θij , cij = cos θij , and δ is the phase responsible for all CP -violating

phenomena in flavor-changing processes in the SM. The angles θij can be chosen to lie in

the first quadrant, so sij , cij ≥ 0.

It is known experimentally that s13 � s23 � s12 � 1, and it is convenient to exhibit

this hierarchy using the Wolfenstein parameterization. We define [4–6]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ

2
= λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ ,

s13e
iδ

= V
∗
ub = Aλ

3
(ρ + iη) =

Aλ
3
(ρ̄ + iη̄)

√
1 − A

2
λ

4
√

1 − λ
2[1 − A

2
λ

4(ρ̄ + iη̄)]

. (11.4)

These relations ensure that ρ̄+ iη̄ = −(VudV
∗
ub)/(VcdV

∗
cb) is phase-convention-independent,

and the CKM matrix written in terms of λ, A, ρ̄, and η̄ is unitary to all orders in λ.

The definitions of ρ̄, η̄ reproduce all approximate results in the literature. For example,

ρ̄ = ρ(1 − λ
2
/2 + . . .) and we can write VCKM to O(λ

4
) either in terms of ρ̄, η̄ or,

traditionally,

VCKM =




1 − λ

2
/2 λ Aλ

3
(ρ − iη)

−λ 1 − λ
2
/2 Aλ

2

Aλ
3
(1 − ρ − iη) −Aλ

2
1



 + O(λ
4
) . (11.5)

J. Beringer et al.(PDG), PR D86, 010001 (2012) (http://pdg.lbl.gov)
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•	 Relating standard model parameters to 
measured results generically requires 
knowing the value of a quark process 
inside a hadron (a matrix element) such 
as as f+(0)

Computers, Algorithms and Software

•	 Physicists at Columbia built the 8,000 and 12,000 node QCDSP computers for QCD in 1997

•	 Columbia, RBRC and UK physicists built 3, 12,000 node QCDOC computers for QCD in 2004, working with IBM 
on the custom ASIC.  These machines were built while IBM was producing the BG/L computer.

•	 Columbia (Christ, Kim) and Edinburgh (Boyle) physicists worked on the design of the BG/Q computer.

•	 Boyle has an extensively optimzed linear solver for the lattice Dirac equation that makes extensive use of the hard-
ware features of the BG/Q.  This solver was used in the chip design and testing stages to help validate the design.

Physics Results and Prospects

•	 Given advances in hardware, software and algorithms, lattice QCD physicists are now regularly 
doing simulations with physically light pions, a major goal since the beginning of numerical 
QCD in the early 1980's.

•	 The RBC and UKQCD collaborations, using the numerically expensive domain wall formulation, now 
have two large simulations at different lattice spacings with physical light quarks.

*	 	Domain wall fermions preserve all the continuum symmetries of QCD at finite lattice spacing

*	 This is vital for measurements of many observables

•	 For the first time, physical results have been produced for a process with 2 particles in the final state, 
the amplitude for a kaon to decay to 2 pions (K -> ππ) with the pions in an isospin 2 final state. 
Physical Review Letters, 108 (2012) 141601 and Physical Review D 86 (2012) 074513. 
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•	 New, preliminary results 
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•	 These new measurements are reducing the errors on measurements of properties of decay of kaons into 
a pion plus leptons, called Kl3 decays 
 

        

K → π semi-leptonic form factor
(RBC+UKQCD Collaborations)
Phys.Rev.Lett. 100 (2008) 141601, Eur.Phys.J. C69 (2010) 159-167, arXiv:1305.7217
Talks by B. Mawhinney (Thursday, 8C, 17:30) and A. Jüttner (Thursday, 7C, 14:20)

〈π|V |K 〉 → f Kπ+ (q2 = 0)
part. twisted boundary conditions
Nf = 2+ 1 domain wall fermions
a2-scaling study (0.09fm-0.14fm)
→ tiny cut-off effects
physical point simulation
mπ: 171–670MeV → arXiv:1305.7217

137–670MeV → PRELIMINARY

polynomial ansatz describes data
over entire mass range
phys. point data eliminates large
systematic due to χ extrapolation

f Kπ+ (0) = 0.9670
(

20
)(

+ 0
−42

)

mq
(7)FSE(17)a

|Vus | = 0.2237 (7) (+10
− 0 )mq (2)FSE(4)a
→≈0

with phys.
point data

precision � 0.3% feasible!

RBC+UKQCD Collaboration

Challenges and Prospects

•	 Simulations are just beginning for the more difficult case of K -> ππ decays with the pions in an isospin 0 final 
state.  This process includes disconnected diagrams, which are much noisier 
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•	 HDCG or other linear solver improvements could be very helpful for these measurements

•	 Simulations with a smaller underlying lattice spacing pose problems with the rate of sampling of the path integral 
phase space.  Greg McGlynn at Columbia has made some progress on this important question.

•	 Producing gauge fields:

*	 Use classical molecular dynamics to move through gauge field space

*	 Quark loops give back reaction on gauge fields by solving Dirac equation

*	 Hasenbusch mass preconditioning allows tuning back reaction  
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*	 RBC/UKQCD uses 7 levels of intermediate masses

*	 Integrate different d.o.f on different time scales (Sexton-Weingarten integrators)

*	 Use higher order integrators, currently RBC/UKQCD use force gradient, O(dt4)

•	 These are giving 10-100× speed-up over a decade ago.

*	 Hard to be completely quantitative here, since without speeds-ups, we could not 
even try current simulations

The calculations reported here have been run on Mira at the ALCF, Sequoia at LLNL, the BGQ 
computers of the University of Edinburgh and the BGQ computers of BNL and the RBRC.


