
Abstract: SUPER's Energy thrust is charged with understanding how computation and communication patterns affect the overall energy requirements of HPC applications. We then leverage this understanding to design software- and hardware-aware optimization techniques that reduce the DOE's HPC
energy footprint. Two focus areas have emerged within this thrust: software solutions that provide fine-grained access to the power measurements and energy efficiency research that utilizes these measurements to develop green optimization strategies. We highlight recent accomplishments in each area
and present empirical results that illustrate SUPER's contributions in minimizing DOE’s HPC energy requirements.

Laura Carrington (lead), Ananta Tiwari
UCSD/PMaC

Rob Fowler
RENCI

Dan Terpstra
UTK

SUPER Energy-efficiency HPC Research

Optimizing energy usage via models for the performance & power of computational phases of HPC applications

These plots show the measured and modeled behavior of two different computational phases of GTC on 1024 cores. We

use the phase-level characterization data to predict performance and power responses of the two phases. Predictions for

power and performance are then combined to predict energy. We note that for this graph, we normalize the energy

required to run each phase at all available frequencies with respect to the energy required to run the phase at the highest

frequency. A ratio of less than 1 for a given frequency/phase pair means that we can conserve energy for that phase by

running it at that frequency compared to running that phase on the default system frequency. The green zone marks those

frequency selections that provide energy savings and illustrate how the models enable fine-grained customized DVFS

settings for an application’s individual computational phases.

Energy-Constrained Computation: Measurement and Adaptation
Power measurement is essential to all energy efficient research
because it helps us understand, exploit and limit hardware policies for
transparent and adaptive power control. Such understanding allows
the implementation of more effective hardware-software co-managed
energy optimizations.

PAPI provides access to hardware performance counters, enabling
software engineers to measure relationships between software
performance and processor or other hardware events.

Component PAPI can be extended to allow energy and power
measurements without any changes to core infrastructure or
measurement tools. Current users of PAPI on HPC systems can now
analyze power and energy with little additional effort. Recent and
ongoing component development supports measuring energy and
power usage via a variety of sources including:

• MIC-side power measurement component
• Host-side MIC power measurement component
• PowerMon2 : RENCI’s real-time power monitoring card
• RAPL: Intel’s Running Average Power Limit model
• NVML: NVIDIA’s Management Library for Tesla cards
• Watts Up?: AC line voltage and current monitor

In discussion with IBM for power measurement via EMON2
& PAPI on BG/Q

PMaC’s Green Queue Framework

Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research (and Basic Energy Sciences/Biological and Environmental Research/High Energy Physics/Fusion Energy Sciences/Nuclear Physics).

Characterization vector per Computational phase =

<P1v1, P1v2, … P1vn>

Capturing power usage via PAPI
Technological and Commercial Imperatives Are Driving the Problem.

Moore’s law  The number of gates/chip grows.
• Vendor compete to build and sell increasingly complex high-end chips.

Denard scaling  If geometry, voltages, and clocks scale co-linearly, power density remains constant.
• While these scaling properties worked, high-end chips could run at increasing speed and still be adequately cooled.

(This is why Moore’s law translated into faster, not just bigger, computers.)

• In the past decade, gate insulator thickness, voltages stopped scaling. Chips become power/cooling-limited.

• Instruction-level parallel designs became dominated by “housekeeping” overhead.

The multicore (and “System on a Chip”) response.
• Add more power-efficient cores and other units (memory controllers, NICS, GPUs) to chips.

• Cores can still run fast, but sustained speed is limited power/cooling of chip package  Sell chips using “de-rated” specs.

• Intel E5-2680 is nominally 2.7GHz but individual cores run easily at TurboBoost speed of 3.5GHz.

• AMD “computational sprinting” is similar.

• Entering an era of “dark” or “dim” silicon in which parts of chips are shut down or run slowly.

Impact on HPC of power/cooling constrained computing.
• On chip controllers automatically react to thermal state by adjusting speeds and feeds of major components. Example, Intel’s

controller uses a “running average power limit” (RAPL) model.

• The performance advantages of hardware adaptation are significant, but

Performance is becoming non-deterministic, varies by : socket, core, location in rack, time of day, other programs.

• Measurement, monitoring, and analysis tools are needed to assess the impact.

• Adaptation requires real time feedback tools.

• System and application code need to interact flexibly with adaptive hardware.

Challenges and Questions
How should power and thermal effects be incorporated in performance experiments? Used in tuning exercises?

How can we use the interfaces to the package controllers to better manage power states?

• Can this be made portable?

Application and library support:

• Thread management mechanisms and policies to improve throughput while saving power?

The V part of DVFS is becoming less effective and is package-wide. Core idling and “clock modulation” (in Intel-speak) is effective on a per core
basis. Can we promote this?

Does better (water) cooling at the package level make the problem easier?

3100

3150

3200

3250

3300

3350

22 22.5 23 23.5 24 24.5 25

EP.C

134

135

136

137

138

139

140

141

142

3100 3150 3200 3250 3300 3350

OpenMP benchmarks run 100 times on dual E52680 blade.
Used GOMP. No application power management.

Power/energy/temperature collected using RAPL.

150

151

152

153

154

155

156

157

24000 24500 25000 25500 26000 26500 27000

M
e
a
n

 P
o

w
e
r

(W
a
tt

s
)

Total Joules Consumed

BT.C

24000

24500

25000

25500

26000

26500

27000

155 160 165 170 175

E
n

e
rg

y
 C

o
n

s
u

m
e
d

in

 J
o

u
le

s

BT.C Execution Time

Performance and Energy Variability

First run of series started on cool, quiescent system.

Sorted by start time Sorted by elapsed time

Real Time Measurement/Analysis to

Support Adaptation.
Resource-Centric Reflection Tools

An infrastructure for real time collection and analysis of node- and system-
wide performance information to guide runtime adaptation.
• Capture “uncore” counter information for shared resources.

• This includes power, energy, and temperature data.
• Capture OS and Network information.
• Share across the entire software stack through a blackboard.

System 0

Rack 0

Node 0

Socket 0

Core 0

Core 1

Core 2

Core N

Shared
Caches

Shared
Resource

Node 1

Shared
NICs

IPMI / RAS

Rack 1

RCR Daemon

RCR Blackboard

RCR
Viewer

RCR
Logger

 Jobs

 (RCR API / Qthreads)

Other Performance
Tools (HPCToolkit etc.) /

Power Control Tools

App 1

App 2

App 3

RCRToolkit

Libra – like
output

Net-work

RCRToolkit + HPCToolkit linked to differentiate l2 cache misses by
memory utilization when misses are taken.

foo	

baz	

L1: <l1v1, l1v2, … l1vn>

{ L2: <l2v1, l2v2, … l2vn>

L3: <l3v1, l3v2, … l3vn>

}

L4: <l4v1, l4v2, … l4vn>

BB1: <b1v1, b1v2, … b1vn>

BB2: <b1v1, b1v2, … b1vn>

BBn: <bnv1, bnv2, … bnvn>

Predict responses at different

scales using models:

Power(BBn)=f(bnv1, bnv2, … bnvn)

Power(Ln)=f(lnv1, lnv2, … lnvn)

Perf(Ln)=f(lnv1, lnv2, … lnvn)

Function foo App
Basic Blocks of L2

Finer Granularity (allows for application awareness)

bar	

L5: <l5v1, l5v2, … l5vn>

Function bar

L6: <l6v1, l6v2, … l6vn>

L7: <l7v1, l7v2, … l7vn>

Construct app phases
using predictions, devise

optimization plans

A
p
p

lic
a

ti
o
n

 C
h
a

ra
c
te

ri
z
a
ti
o

n

(c
o
lle

c
te

d
 v

ia
 P

M
a

C
 T

o
o
ls

)

v1, v2, … vn are computation

properties that impact power and

performance. Ex. Cache hit rates,

arithmetic intensity, etc.

L1: <l1v1, l1v2, … l1vn>

{ L2: <l2v1, l2v2, … l2vn>

L3: <l3v1, l3v2, … l3vn>

}

L4: <l4v1, l4v2, … l4vn>

Function foo

L5: <l5v1, l5v2, … l5vn>

Function bar

L6: <l6v1, l6v2, … l6vn>

L7: <l7v1, l7v2, … l7vn>

Phase I
<phase-specific optimization policy>

Phase II

Phase III

Phase definitions

crossing function

boundaries

A fully automated framework that utilizes fine-grained application

characterizations and power and performance models to devise and deploy energy

efficient policies

An application’s computational behavior is captured by a series of characterization

vectors; these vectors are inputs to power and performance models.

Phase Characterization

• Collecting data at various scales (from
function to loop to basic blocks) allows flexible
definition and construction of phases. A
computational phase is defined as a window
in the execution of a program where some
relevant characteristics of the computation
remain fairly unchanged. Phase boundaries
can change for different types of
optimizations

• Identify phases based on some behavior of
interest:

Data footprint, L3 Misses, Power draw,
Accelerator performance, vectorization

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

E
n
e

rg
y
 w

rt
 t
o

 t
h
e

 h
ig

h
e
s
t
(2

.6
 G

H
z
)

F
re

q
u
e
n

c
y

CPU Clock Frequency (GHz)

(Application: gtc, Input ID: F, Multiple Phases), 1024 cores

measured (p1)
modeled (p1)

measured (p2)
modeled (p2)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

T
im

e
 w

rt
 t
o
 t

h
e
 h

ig
h
e
s
t
(2

.6
 G

H
z
)

F
re

q
u

e
n
c
y

CPU Clock Frequency (GHz)

(Application: gtc, Input ID: F, Multiple Phases), 1024 cores

measured (p1)
modeled (p1)

measured (p2)
modeled (p2)

 220

 240

 260

 280

 300

 320

 340

 360

 380

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

M
o
d

e
le

d
 P

o
w

e
r

D
ra

w
 (

W
a
tt

s
)

CPU Clock Frequency (GHz)

(Application: gtc, Input ID: F, Multiple Phases), 1024 cores

Modeled Phase-level Power Draw (p1)
Modeled Phase-level Power Draw (p2)

Power Model

Performance Model Energy Model

Green Zone

Case Study: Modeling Two Computational Phases of GTC (1024 core run; Gordon)

