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Abstract: SUPER's Energy thrust is charged with understanding how computation and communication patterns affect the overall energy requirements of HPC applications. We then leverage this understanding to design software- and hardware-aware optimization techniques that reduce the DOE's HPC
energy footprint. Two focus areas have emerged within this thrust: software solutions that provide fine-grained access to the power measurements and energy efficiency research that utilizes these measurements to develop green optimization strategies. We highlight recent accomplishments in each area

and present empirical results that illustrate SUPER's contributions in minimizing DOE’s HPC energy requirements. )

Energy-Constrained Computation: Measurement and Adaptation Capturing power usage via PAPI

Power measurement is essential to all energy efficient research
because it helps us understand, exploit and limit hardware policies for
transparent and adaptive power control. Such understanding allows
the implementation of more effective hardware-software co-managed
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Optimizing energy usage via models for the performance & power of computational phases of HPC applications
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