
Abstract: SUPER's Energy thrust is charged with understanding how computation and communication patterns affect the overall energy requirements of HPC applications. We then leverage this understanding to design software- and hardware-aware optimization techniques that reduce the DOE's HPC 
energy footprint. Two focus areas have emerged within this thrust: software solutions that provide fine-grained access to the power measurements and energy efficiency research that utilizes these measurements to develop green optimization strategies. We highlight recent accomplishments in each area 
and present empirical results that illustrate SUPER's contributions in minimizing DOE’s HPC energy requirements. 
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Optimizing energy usage via models for the  performance & power of computational phases of HPC applications 

These plots show the measured and modeled behavior of two different computational phases of GTC on 1024 cores. We 

use the phase-level characterization data to predict performance and power responses of the two phases. Predictions for 

power and performance are then combined to predict energy. We note that for this graph, we normalize the energy 

required to run each phase at all available frequencies with respect to the energy required to run the phase at the highest 

frequency. A ratio of less than 1 for a given frequency/phase pair means that we can conserve energy for that phase by 

running it at that frequency compared to running that phase on the default system frequency. The green zone marks those 

frequency selections that provide energy savings and illustrate how the models enable fine-grained customized DVFS 

settings for an application’s individual computational phases. 

Energy-Constrained Computation:   Measurement and Adaptation 
Power measurement is  essential to all energy efficient research 
because it helps us understand, exploit and limit hardware policies for 
transparent and adaptive power control. Such understanding allows  
the implementation of more effective hardware-software co-managed 
energy optimizations. 
 
PAPI provides access to hardware performance counters, enabling 
software engineers to measure relationships between software 
performance and processor or other hardware events. 
 
Component PAPI can be extended to allow energy and power 
measurements without any changes to core infrastructure or 
measurement tools. Current users of PAPI on HPC systems can now 
analyze power and energy with little additional effort. Recent and 
ongoing component development supports measuring energy and 
power usage via a variety of sources including: 
 
• MIC-side power measurement component 
• Host-side MIC power measurement component 
• PowerMon2 : RENCI’s real-time power monitoring card 
• RAPL: Intel’s Running Average Power Limit model 
• NVML: NVIDIA’s Management Library for Tesla cards 
• Watts Up?: AC line voltage and current monitor 

In discussion with IBM for power measurement via EMON2              
& PAPI on BG/Q  

PMaC’s Green Queue Framework 

Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research (and Basic Energy Sciences/Biological and Environmental Research/High Energy Physics/Fusion Energy Sciences/Nuclear Physics). 

Characterization vector per Computational phase =  

<P1v1, P1v2, … P1vn> 

Capturing power usage via PAPI 
Technological and Commercial Imperatives Are Driving the Problem. 
 

Moore’s law  The number of gates/chip grows. 
• Vendor compete to build and sell increasingly complex high-end chips. 

 

Denard scaling  If geometry, voltages, and clocks scale co-linearly, power density remains constant.  
• While these scaling properties worked, high-end chips could run at increasing speed and still be adequately cooled. 

(This is why Moore’s law translated into faster, not just bigger, computers.) 

• In the past decade,  gate insulator thickness, voltages stopped scaling.   Chips become power/cooling-limited. 

• Instruction-level parallel designs became dominated by “housekeeping” overhead. 
 

The multicore (and “System on a Chip”) response. 
• Add more power-efficient cores and other units (memory controllers, NICS, GPUs) to chips. 

• Cores can still run fast, but sustained speed is limited power/cooling of chip package  Sell chips using “de-rated” specs. 

• Intel E5-2680 is  nominally 2.7GHz but individual cores run easily at  TurboBoost speed of  3.5GHz. 

• AMD “computational sprinting” is similar. 

• Entering an era of “dark” or “dim” silicon in which parts of chips are shut down or run slowly. 
 

Impact on HPC of power/cooling constrained computing. 
• On chip controllers automatically react to thermal state by adjusting speeds and feeds of major components.  Example, Intel’s 

controller uses a “running average power limit” (RAPL) model. 

• The performance advantages of hardware adaptation are significant, but 

Performance is becoming non-deterministic, varies by : socket,  core,  location in rack, time of day, other programs. 

• Measurement, monitoring, and analysis tools are needed to assess the impact. 

• Adaptation requires real time feedback tools. 

• System and application code need to interact flexibly with adaptive hardware. 

Challenges and Questions 
How should power and thermal effects be incorporated in performance experiments?  Used in tuning exercises? 
 

How can we use the interfaces to the package controllers to better manage power states?   

• Can this be made portable? 
 

Application and library support: 

• Thread management mechanisms and policies to improve throughput while saving power?  
 

The V part of DVFS is becoming less effective and is package-wide.  Core idling and “clock modulation” (in Intel-speak) is effective on a per core 
basis.  Can we  promote this? 

 

Does better (water) cooling at the package level make the problem easier? 
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Real Time Measurement/Analysis to 

Support Adaptation. 
Resource-Centric Reflection Tools 
 

An infrastructure for real time collection and analysis of node- and system-
wide performance information to guide runtime adaptation. 
• Capture “uncore” counter information for shared resources. 

• This  includes power, energy, and temperature data. 
• Capture OS and Network information. 
• Share across the entire software stack  through a blackboard. 
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RCRToolkit + HPCToolkit linked to differentiate l2 cache misses by 
memory utilization when misses are taken. 

foo	

baz	

L1: <l1v1, l1v2, … l1vn> 

{ L2: <l2v1, l2v2, … l2vn> 

L3: <l3v1, l3v2, … l3vn> 

} 

L4: <l4v1, l4v2, … l4vn> 

BB1: <b1v1, b1v2, … b1vn> 

BB2: <b1v1, b1v2, … b1vn> 

BBn: <bnv1, bnv2, … bnvn> 

Predict responses at different 

scales using models: 

 

Power(BBn)=f(bnv1, bnv2, … bnvn) 

Power(Ln)=f(lnv1, lnv2, … lnvn) 

Perf(Ln)=f(lnv1, lnv2, … lnvn) 

Function foo App 
Basic Blocks of L2 

Finer Granularity (allows for application awareness) 

bar	

L5: <l5v1, l5v2, … l5vn> 

Function bar 

L6: <l6v1, l6v2, … l6vn> 

L7: <l7v1, l7v2, … l7vn> 

Construct app phases 
using predictions, devise 

optimization plans 
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v1, v2, … vn are computation 

properties that impact power and 

performance. Ex. Cache hit rates, 

arithmetic intensity, etc.  

L1: <l1v1, l1v2, … l1vn> 

{ L2: <l2v1, l2v2, … l2vn> 

L3: <l3v1, l3v2, … l3vn> 

} 

L4: <l4v1, l4v2, … l4vn> 

Function foo 

L5: <l5v1, l5v2, … l5vn> 

Function bar 

L6: <l6v1, l6v2, … l6vn> 

L7: <l7v1, l7v2, … l7vn> 

Phase I 
<phase-specific optimization policy> 

Phase II 

Phase III 

Phase definitions 

crossing function  

boundaries 

A fully automated framework that utilizes fine-grained application  

characterizations and power and performance models  to devise and deploy energy 

efficient policies 

 

An application’s computational behavior is captured by a series of characterization 

vectors; these vectors are inputs to power and performance models. 

 

Phase Characterization 
 

• Collecting data at various scales (from 
function to loop to basic blocks) allows flexible 
definition and construction of phases. A 
computational phase is defined as a window 
in the execution of a program where some 
relevant characteristics of the computation 
remain fairly unchanged. Phase boundaries 
can change for different types of 
optimizations 
 

• Identify phases based on some behavior of 
interest: 

Data footprint, L3 Misses, Power draw, 
Accelerator performance, vectorization 
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Case Study: Modeling Two Computational Phases of GTC (1024 core run; Gordon)  


