Impact of FASTMath Solver Technologies on Scientific Applications

Linear, nonlinear, and eigenvalue solvers are at the heart of many scientific applications. FASTMath is developing and deploying state-of-the-art solver
and time integration technologies that lead to significant performance improvements in application codes and enable scientific discoveries at scale

ParaDiS: Parallel Dislocation Dynamics PISCEES Ice Sheet Modeling NUCLEI/MFDn

A. Arsenlis, S. Aubry, G. Hommes, C. Woodward (LLNL); D. Gardner, D. Reynolds (SMU) S. Price (LANL); M. Adams, D. Martin, E.G. Ng (LBNL); S. Cornford (Bristol), H.M. Aktulga, C. Yang, E.G. Ng (LBNL); P. Maris, J.P. Vary (ISU)
I. Kalashnikova, M. Perego, A. Salinger, R. Tuminaro (SNL); P. Worley (ORNL)

ParaDiS is a massively PARAIllel Dislocation Simulator. It models strain hardening by

Successful description of the structure of nuclei is a Iong standmg goal of
simulating the collective motion and interactions of dislocations. Each dislocation line '
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