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GL model

e Time-dependent Ginzburg-Landau
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Coupled system for 1) and A:
complex order parameter characterizing density of Cooper pairs
vector potential for magnetic field
fluctuations
phenomenological parameters from microscopic theory

for T'— T, (critical temperature)
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critical current J :
* no unique definition
e usually defined when voltage V is a small
percentage 0 (here 1%) of the free flow value Vg vortex depinning
regime

* J_calculated e.g. by a bisection method < Sl -
current density (J)

vortex creep
regime

vortex velocity (voltage)

Boundary conditions

e Quasiperiodic conditions define the current

Can be dealt with using an appropriate gauge transformation on a structured mesh

Quasiperiodicity on an unstructured mesh:

Master-slave paradigm similar to mortar elements

Requires point location

Introduces implicit coupling not captured by the mesh topology
Residual/Jacobian assembly requires slave-to-master transfer
Slaves are linear combinations of master variables

Linear constraints complicate linear solve
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Software/algorithm stack

e Leveraging power of SciDAC Institutes

(optimization)

(core solvers) Performance tuning
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Preconditioners

Master-Slave contact
Mortar Elements

Krs 0 0 Krr Krs 0 0
0 Kum Kur :> J = 0 Ksr; Kum Kur

0 Krm Kgr 0 0 Kryv  Krr

* Violates ellipticity:
* No longer symmetric G- (
* Or positive definite

e Standard iterative methods underperform
* Need appropriate preconditioners
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* For GL coupling S to M is an appropriate gauge transformation

Use splitting to isolate the constraints
Constraint elimination results in an SPD Schur complement S
Precondition S
* Matrix-free using block P
 Assemble S
e Use multigrid or domain-decomposition
PETSc provides flexible splitting/recombination preconditioner machinery
* PCFieldSplit
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Discretization/Meshing
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* AMR: memory/cycles savings once solution features have stabilized
* Mapping to/from refined/derefined geometry carries substantial overhead
* Needs to be used sparingly and intelligently

* Mesh coarse geometry

* Refined uniformly

* Relax solution on uniformly refined mesh

* Derefinement to focus on the features of relaxed solution

Performance & Outlook

* Assembly of constraints nontrivial in current software framework
* Requires parallel point location
* Preallocation of Jacobian entries of ordinarily disconnected nodes
e Underallocation harmful: insertion of elements into sparse matrix
* Overallocation harmful: transfer/insertion of many zero entries from
Slave to Master
e Zero-current boundary conditions simulations highly scalable

Simulation

e Long-time integration

e Need to obtain reliable statistics on Jg independent of transient, fluctua-
tions

e Requires long-time integration (~ I'/ag millions of timesteps)

e Alleviated using implicit time-integration
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Parameters u and k are related to I', ag, b, € as well as
the fundamental coherence length £y and magnetic penetration length Ag.

"t A" are the approximations at time tna1 being determined from
the approximations at ¢,

Aa = (V +iA)? is the modified Laplace operator

Fz-n“H and F" are a splitting of the remaining nonlinear terms into implicit
and explicit parts

Fully implicit methods correspond to F; = F, G; = G, F, = G, = 0 and
generally enjoy the best stability properties.

Linearly implicit methods (with F; = G; = 0, Aa» = A) have certain
advantages

Can be obtained as special cases of the general implicit method.

Shape optimization

Requires solution of adjoint operator
How does noise enter into the adjoint?
How to compute derivatives with respect to shape?

Preliminary work on the temperature modulation model of inclusions

Adjoint must be solved back in time — final condition for GL generates an initial for adjoint
Forward problem state must be stored and reused later
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Determining optimal pinning landscape:
* Optimize critical current

* Minimize deviations from best case

* Min-max or min rms

pinning configurations 6




