\
N
\

onne

NATIONAL
LABORATORY

2o\ THE UNIVERSITY OF

" CHICAGO

GL model

e Time-dependent Ginzburg-Landau

ov 0FcL OFcL
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(O + i) = e(r)ih — [P + (V — iA)* o + {(x, 1)
KV X (VXxA)=T,+J,+1T,

Coupled system for ¢ and A:
W complex order parameter characterizing density of Cooper pairs

A vector potential for magnetic field
( and Z thermal fluctuations

e(r) = M — 0 for T" — T, (critical temperature)
1
B=VxA E=—-——-0A—-Vyu
c

e (Critical) Current

Total current: J=J_ +J

J = Im [ (V — iA)¢] — (Vi + ,A)

L

flow )
regime >,

critical current J .
* no unique definition
e usually defined when voltage Vis a
small percentage ¢ (here 1%) of the o
free flow value V vortex depinning
ff regime

J_ calculated e.g. by a bisection >
method current density (J)

vortex creep
regime

vortex velocity (voltage)

Critical current determined by long-time evolution of TDGL (to stationary flow)
Dominated by rare events of vortex depinning and avalanches

Frequency and duration of pinning/depinning depends on configurations of inclusions
Suitable pinning configurations must be determined using geometry optimization

Iterative solver on GPUs

* due to the laplacian, an explicit time integration requires very small dt, i.e., it takes a
long time to reach a steady state (easy to parallelize)

* due to the boundary conditions, we cannot use a FFT-based spectral solver for arbitrary
magnetic field (for certain discrete values it is possible)

=» use iterative solver for the implicit time integration

T
* the GL equation can be written in the simple form | MW = b - Ero’ ""wa—;:)F
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* in order to invert the matrix M on a parallel machine, we use the Jacobi iteration

we write M=D+TR where D=diag(M)

then iterate pk+1l) — p-1 (b_R\p(k))

convergence criterion

sl oy <1

residual rp, = b— MU K)

This scheme is implemented for GPUs and requires for a typical dt=0.1 and
dx=dy=dz=0.5, 4-5 iterations only to reach an accuracy of 10°

Iterative structured-mesh Ginzburg-Landau solver on GPUs
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Discretization & Pinning
¢ large-A limit

* for large-A (or k) our equation system reduces to the GL equation only, and we can

keep the magnetic vector potential constant.

* we choose the gauge for the vector potential as A = —Bzye(xo)
i.e. we have constant magnetic field in z-direction

* the current simplifies to J=1Im[y*(V—-1A)Y] — Vi

¢ Discretization on regular grid

* time discretization

o — U = dt et — 2 WPt — 2 [t P+ (V — 2A)2 035+ G0

implicit Crank-Nicolson, with UV V.y.2(1)
w;,, ww,y,Z(t o dt)
e (m +15) /2

* Laplacian

Uiit1,j,6 + Ui Vic1,5k — 2¥m i j416 + Vij—1.6 — 2Vm Vi jk+1 + Yijk—1 — 2¥m
2 + 2 + 2
dx dy dz

(V —1A)% ¢hp, =

“link” variables

columnar + splayed I pinning
columnar center

d/

particles

Inclusions and defects are modeled by T_ modulation = corresponding to normal metallic
pinning centers: spatial variation of ¢(r) [positive in the superconductor, negative in the

defect]
e arbitrary geometry, but
e on aregular grid (see next and poster 2)

Performance & Outlook

e Implementation and Performance

the GPU implementation of the Jacobi scheme requires
one CUDA-kernel routine for the construction of vectors b and D1

and an iteration step to get the next approximation ¥ik+1)
for finite external current the ODE for K needs to be integrated (requiring efficient

CUDA-reduction kernels, and
the Poisson equation for 1 is solved by super-relaxation & Jacobi iterations

- The performance is a few 100x faster than explicit integration, which would
require a very small dt to be stable

On a single 6GB Tesla or Kepler GPU card we can simulate system sizes up to 5123

e Next steps

General
* data management and analysis optimizations
 visualization

Large-A limit code (in progress)
» implementation of different magnetic field directions
» application and comparison with experiments

Major plans to the next year

** Implementation of full GL+Maxwell equation system on GPUs

*»* Development of unstructured FEM codes for extended pinning structures
(cont)

** Automation of pinning structure meshing

¢ Design of optimal pinning structure sampling on leadership-class machines

Dynamics & Meshing Boundary conditions

e Dynamics e Laplacian with external current

* separate dc electric field
* using transformation (%), the TDGL can be written as

p(r) =~ B+ ji(r)
(r) = (r) exp (iKz)

* fix the current (ordinary differential equation for K)

Joww = Im W*(vx - iAx)@Zﬂ v K <y;2|2> oK
* the discrete Laplacian in x-direction is then given by

this gives the voltage-current characteristics E,(J.,;) through d,K=E, ~ e ~
which we use to obtain the critical current J_ (0 — 2(A, — K))2 1; Uk Uj¥igr,jk + UKUj Vi-1,4k = 2¥m
€T x m
dx?

(%) R L _
(O + ifi)h = e(x)th — [P + (V +iK — iA)* o + {(x, 1)

where we defined E =0d,K and K=(K,0,0)

* solve the Poisson equation for u (follows from current conservation)

with U, =eKdx

Af=VIm |[§(V = iA))| + KV, [P

e No-current 8C

- solved by super-relaxation with Jacobi iterations

Orfi = — i+ VI [§(V — iA))| + K Va[d]?

» for surfaces, we use the no-current condition: |0y 4 .9 =0 and 0y 4 .t =0

* not applicable in x-direction if external current is applied

o SII'I'IU'BtIOI'I Qﬂd - this defines the laplacian at the surface layers

e Periodic/Quasi-periodic BC

 for A= 20 and finite vector potential (as before) [no current], we can use periodic
conditions in x- & z-directions and quasi-periodic in y-direction (y=0,...,L):
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(challenge on unstructured/refined meshes)
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* for finite A (finite k) we also have boundary conditions for the vector potential.
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Example: Single inclusion Example: Geometrical constraints

Find the pin-braking force to detach a vortex from a single nanoscale ellipsoidal inclusion s
. e Superconducting tape

key parameter in strong-pinning theory
* expect non-trivial dependence on defect size

Bz=0.002020

2D system
periodic boundary conditions in x-direction
: : , no-current boundary conditions in y-direction
B,=0.001895 - ,
B,=0.00271 1 aspect ratio of 32:1
typically 64x2048 grid points and width (8-20)¢,
perpendicular magnetic field
external current in x-direction

z=0, x=N,/2

= prepare the initial state for a single free |, | ;‘/‘ ¢ Perforated film

vortex, relax to a steady state with inclusion, 03|

then slowly increase the field. 04 | ' | | ' * modulation of the linear coefficient (r), where T>T_ in the “holes”
0

Bz=0.003011 t= 1060
size 505x200Ex25E, particle diameter 8§

Metallic particles

Order parameter

1.02
pattern, prescribed by g(r), N=5122 order parameter amplitude at finite field



