LUUPER SUPER Computer Performance:

INSTITUTE FOR SUSTAINED PERFORMAN
ENERGY, AND RESILIENCE

Recent Results: 3-D FFT with MPI Non-Blocking All-to-All Communication

performance
Active Harmony Active Harmony | N Tuning Target
Server Client launch Parallel 3-D FFT
parameter
configuration Overlap computation and communication between tiles
. . . n |
Divide input data block into smaller tiles @ | Hom npeck [ez st
y / /'/) — tile (i-1) : A2A : : : i U;"':’;‘:k IMPI_Ialltoall
= /] [[| e e e (] e T T T
E ; O.Q‘Q rankogh“:)i: tile (i+1) | ::IK l A2A i : H I
rank, rank, liriaihik; 7r7a?r717k7: e v o) i :
tile (i+2) FFTy
FFTz Transpose FFTy & Pack A2A Unpack & FFTx I _Pack I A2A :
20 NEW Bl OLD = o
218 NEW Approach ol
£ 1.76x Speedup over FFTW E OLD Approach u
< 1.6 Talltoall

27
20483 Complex Numbers Non-Maximized Overlap £t

256 Cores on Hopper

B W
T T

HFT time (sec

NEW Approach
Maximized Overlap
Ignorable MPI_Wait() Time

| <
E 14}]
m
b
Qs) 1.2 L. . . 4
8 §
1.0 B, o N o -

S _ OLD Approach
Q
2081 8 18 128 128 256 25 256 256 \L Low Speed

1280 1536 1792 2048 1280 1536 1792 2048

FFTz

v
3

#CPU p and input size N NEW NEW-0 OLD OLD-0

CHILL is a transformation and code generation framework designed specifically for
compiler-based auto-tuning. ORIO takes as input code with embedded domain-specific

optimization descriptions. Both systems permit users to guide code mapping to
explore a search space of possible implementations of a computation, making it
possible to achieve performance comparable to manual tuning.

QCD (dslash operator)
» Key computation dominates execution time

» Application developers implemented low-level code that performs well across platforms

« But difficult to read, maintain, retarget

* New architectures (e.g., Xeon Phi) require different parallelization and data layout
GOALS:

 Start with high-level, readable code (requires simplification of data structures)
 Tools apply transformations to derive optimized code

« Map to different architectures automatically or semi-automatically

Original code High-level code

0;n<4;n++mat++){

Output code

for(n=0;n<4;n++) for (2= 0: 12 <= 3: 12 += 1) {
for 029? J<f3¥ l+.+) c_c_real[0] += (mat_e_real[0][0] * b_c_real[0]);
for (i=0; i<3; i++) o . ¢_c_imag0] += (mat_e_real[0][0] * b_c_imag[0]);
c_c_real[i] += mat_e_realli][j] * b_c_real[j]; c_c_real[0 + 1] += (mat_e_real[0 + 1][0] * b_c_real[0]);
for (i=0; i<3; i++){ c_c_real[0 + 2] += (mat_e_real[0 + 2][0] * b_c_real[0]);
c_c_imag[i] += mat_e_real[i][j] * b_c_imag[j]; c_c_real[0] -= (mat_e_imag[0][0] * b_c_imag[0]);
for (i=0; i<3; i++) c_c_imag[0 + 1] += (mat_e_real[0 + 1][0] * b_c_imag[0]);
c_c_real[i] -= mat_e_imagl[i][j] * b_c_imag[j]; c_c_imagl[0 + 2] += (mat_e_real[0 + 2][0] * b_c_imag]0]);
for (T=6 <3; i++ - - ! c_c_imag[0] += (mat_e_imag[0][0] * b_c_real[0]);
Rt Y ’ S - c_c_real[0 + 1] -= (mat_e_imagl[0 + 1][0] * b_c_imag[0]); 0.0350000
c_c_imag[i] += mat_e_imag[i]li] * b_c_realll: " "rca0 + 2] -= (mat_e_imag[0 + 2][0] * b_c_imag[0]);
c_c_imag[0 + 1] += (mat_e_imag[0 + 1][0] * b_c_real[0]);

Orio mapping to GPU

MILC QCD Multi-MatVec product

} c_c_imag[0 + 2] += (mat_e_imag[0 + 2][0] * b_c_real[0]); 0.0300000
c_c_real[0] += (mat_e_real[0][0 + 1] * b_c_real[0 + 1]);
c_c_imag[0] += (mat_e_real[0][0 + 1] * b_c_imag[0 + 1]); .
c_c_real[l0 + 1] += (mat_e_real[0 + 1][0 + 1] * b_c_real[0 + 1]); — 0.0250000 — - —
c_c_real[0 + 2] += (mat_e_real[0 + 2][0 + 1] * b_c_real[0 + 1]);) — -
c_c_real[0] -= (mat_e_imag[0][0 + 1] * b_c_imag[0 + 1]); £ 0.0200000 -—
c_c_imag[0 + 1] += (mat_e_real[0 + 1][0 + 1] * b_c_imag[0 + 1]); o —
c_c_imag[0 + 2] += (mat_e_real[0 + 2][0 + 1] * b_c_imag[0 + 1]); € 0.0150000
c_c_imag[0] += (mat_e_imag[0][0 + 1] * b_c_real[0 + 1]); =
c_c_real[0 + 1] -= (mat_e_imag[0 + 1][0 + 1] * b_c_imagl[0 + 1]);
c_c_real[0 + 2] -= (mat_e_imag[0 + 2][0 + 1] * b_c_imag[0 + 1]); 0.0100000
c_c_imag[0 + 1] += (mat_e_imag[0 + 1][0 + 1] * b_c_real[0 + 1]);
c_c_imag[0 + 2] += (mat_e_imag[0 + 2][0 + 1] * b_c_real[0 + 1]); 0.0050000

c_c_real[0] += (mat_e_real[0][0 + 2] * b_c_real[0 + 2]);

C H | LL Scri t c_c_imag[0] += (mat_e_real[0][0 + 2] * b_c_imag[0 + 2]);
p ¢_c_real[0 + 1] += (mat_e_real[0 + 1][0 + 2] * b_c_real[0 + 2]); 0.0000000
original() c_c_real[0 + 2] += (mat_e_real[0 + 2][0 + 2] * b_c_real[0 + 2]); 2 4 6 8 10 12 14 16

c_c_real[0] -= (mat_e_imagl[0][0 + 2] * b_c_imag[0 + 2]);
c_c_imag[0 + 1] += (mat_e_real[0 + 1][0 + 2] * b_c_imag[0 + 2]);
c_c_imagl0 + 2] += (mat_e_real[0 + 2][0 + 2] * b_c_imag[0 + 2]);
c_c_imag|0] += (mat_e_imagl[0][0 + 2] * b_c_real[0 + 2]);
c_c_real[0 + 1] -= (mat_e_imag[0 + 1][0 + 2] * b_c_imag[0 + 2]);

Number of sites on node
distribute([0,1,2,3],3)

& i

unroII(0,3,0) c_c_real[0 + 2] -= (mat_e_imag|[0 + 2][0 + 2] * b_c_imagl[0 + 2]);
unroll(1,3,0 ¢_c_imag[0 + 1] += (mat_e_imag[0 + 1][0 + 2] * b_c_real[0 + 2]);
unro||(2‘370 c_c_imagl0 + 2] += (mat_e_imag[0 + 2][0 + 2] * b_c_real[0 + 2]);

-

)
)
unroll(3,3,0)
)

unroll(0,2,0

K20X-Base

=4=K20X-Tuned

Analysis and Optimization

Methods for performance optimization of petascale applications must address
the growing complexity of new HPC hardware/software environments that
limit the ability of manual efforts in successful performance problem triage,
software transformation, and static/dynamic parameter configuration. Greater
performance tool integration and tuning process automation are necessary to
manage and share performance information, to generate correct multiple
code variants, to conduct controlled performance experiments, and to
efficiently search and discover high-performant solutions, thereby improving
performance portability overall. SUPER is advancing autotuning capabilities
through the coupling of performance measurement, analysis, and database
tools, compiler and program translators, and autotuning frameworks.

Application
- Performance
Energy NS
. Resilience
Autotuning Measurement
Modeling Analysis

Optimized
Application
Multi-Objective Optimization

.

Recent Results: Adding OpenMP threads to MULTISCALE application
MPAS-Ocean using TAU to analyze performance

* MPI block decomposition + OpenMP element decomposition reduces total
instructions in computational regions (~10% faster than MPI alone)

« Guided OpenMP thread schedule balances work across threads (~6%
faster than default)

MPAS-Ocean MPI+OpenMP: worldOcean60km, RK4 on 96 cores

+ Weighted MPI block decomposition could = /
further balance work across processes sl /
(~5% faster in some tests) N /7

« Overlapping communication and i b\\\ /
computation could significantly reduce . -
synchronization delays when exchanging &

OpenMP Schedule
= 16x6 *32x3 +48x2 96x1

halo regions (not yet implemented)

Jacqueline Chame

Mary Hall

Jeff Hollingsworth

Allen D. Malony, Kevin Huck
Shirley Moore

Boyana Norris

Leonid Oliker, Sam Williams

Pat Worley, Philip C. Roth

University of Southern California
University of Utah

University of Maryland

University of Oregon

University of Texas at El Paso

Argonne National Laboratory

Lawrence Berkeley National Laboratory

Oak Ridge National Laboratory

A downloadable collection of programs installable St s = [

across a variety of systems, consisting of: S —
- Hardware characterization, via portable, instrumented &30 ¥ e
microbenchmarks i — L
- Software characterization via static analysis/modeling =" ~ e
of source code, and performance counter execution =) I
instrumentation g~ i,
- Data manipulation and visualization interface via TAU = Sromiiocun o

| 1

Recent Results: Optimize TEXAS two-electron integral package for NWChem on a
variety of platforms.

- Balancing the load across MPI tasks by reducing task granularity
- Improving spatial data locality by increasing block size

- Developing new intelligent sorting algorithms

- Reducing redundant computations

- Using vectorization

60.0%
60%
=*-Task Granularity 50.0% =®-Task Granularity

4% + Data Locality

+ Additional Optimizations
/ x

A=
)

50% .
4% + Data Locality

+ Additional Optimizations

B
S
xX

N w N
° © o
e g 2
X X X

3
8
% Improvement

% Improvment
g
X

10.0% - i

._.
IS
N

0.0%

Q
X

1 2 4 6 8 16 24 1 2 4 8 16

MPI Tasks/Node (Hopper XEG) MPI Tasks/Node (Cray XC30)

50.0%
50%

45% =*-Task Granularity 45.0% =®-Task Granularity
40% 4% + Data Locality 40.0% 4% + Data Locality
35% + Additional Optimizations 35.0%

+ Additional Optimizations

30% 30.0%

25% 25.0%

20% 20.0%

15% J 15.0%

10% = e > 10.0%

5% / 5.0%
‘ "

o & \)/V
0% 0.0%
1 2 4 8 16

MPI Tasks/Node (BGQ)

% Improvement
% Improvement

1 2 4 8 16 32 60

No. of Threads (Intel MIC)

XGC1 Performance: Weak Particle Scaling o
.2 million

Recent Collaborative Results: MPI and OpenMP optimization .. i s S S o

Cray XK7 (1 16-core proc. 1 GPU per node)

and GPU port of computational kernel resulted in 4X S =
performance improvement on Cray XK7 of XGC1 particle-in- | ™|
cell code for gyrokinetic simulation of tokamak plasma. it T |

1000 -

500 |-] 4

Next steps: Computational kernel takes >60% of 3 U S S S T O T
execution time in hybrid CPU/GPU implementation, e
and >85% in CPU-only implementation. Continued nina T
optimization for both CPU and GPU is important.
Analyses of CPU-only version using HPCToolkit and
PerfExpert indicate high cycles per instruction in
kernel due to expensive floating point operators (sqrt,
exp, divide) and due to high number of data accesses
in particle location search algorithm.

[DB: inf2d 00100
U lor 60

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>

R R T R R s
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

VIT is a tool for tracking how a value contributes to
subsequent computation)

- Tracking value influence can guide optimization,
debugging, and fault tolerance strategies

- VIT tracks influence data for sequential, multithreaded,
and multi-process (MPI) programs

- VIT tracks influence data using dynamic
instrumentation (Intel Pin-based)

Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy Office of Advanced Scientific Computing Research

