

Real-Time (RT) TDDFT

Real-time TDDFT in a Nutshell

 $i\frac{\partial \mathbf{P}'}{\partial t} = [\mathbf{F}'(t), \mathbf{P}'(t)]$

- Full response beyond perturbation limit
- \blacktriangleright Real-time, real-space \rightarrow full dynamical information
- Insight into ultrafast and nonlinear processes
- High harmonic generation
- Valence and core excitations

- Fully compatible with all XC functionals in NWChem
- Optimized version released in NWChem 6.3 (May 2013)
- Gradients in development

SciDAC-3 Pl Meeting

New and ongoing developments and applications in real-time and linear-response TDDFT in NWChem

Niri Govind, Pacific Northwest National Laboratory

Optical Excitations in Doped

J. Phys: Condensed Matter (Fast Track Communication) submitted (July 2013) J. Phys. Chem. C submitted (July 2013)

Collaborators: K. Lopata, H. van Dam (PNNL), D. Silverstein, L. Jensen (PennState), D. Truhlar, C. Cramer (Minnesota), **Experiment:** Scott Chambers (PNNL)

Modeling Above Ionization

Dve	BLYP			LC-BLYP			B3LYP			CAM-B3LYP			Exp.
	Abs.	Em.	S.S.	Abs.	Em.	S.S.	Abs.	Em.	S.S.	Abs.	Em.	S.S.	S.S.
1	3.09	2.12	0.97	3.72	3.04	0.68	3.55	2.72	0.83	3.79	3.07	0.72	0.86^{a}
2	3.68	3.62	0.06	5.00	4.79	0.21	4.16	4.06	0.10	4.73	4.56	0.17	0.23^{b}
3	2.84	2.16	0.68	4.00	3.54	0.46	3.36	2.85	0.51	3.85	3.48	0.37	0.44^{c}
4	2.63	2.49	0.14	3.71	3.34	0.37	3.11	2.90	0.21	3.58	3.26	0.32	0.19^{d}
5	1.94	1.87	0.07	1.97	1.77	0.20	2.09	2.01	0.08	2.08	1.94	0.14	0.02^{e}
6	1.99	1.26	0.73	2.70	2.45	0.25	2.31	2.09	0.22	2.64	2.41	0.23	0.10^{d}
7	3.16	(I)	—	3.97	3.31	0.66	3.54	2.93	0.61	3.88	3.29	0.59	0.68 ^f
8	2.14	1.90	0.14	3.15	2.60	0.55	2.49	2.16	0.33	2.78	2.45	0.33	0.36^{g}
9	1.94	1.89	0.05	1.96	1.83	0.13	2.09	2.02	0.07	2.07	1.97	0.10	0.02^{e}
10	1.47	1.29	0.18	1.97	1.94	0.03	1.94	1.76	0.18	2.13	2.11	0.02	—
ME			0.07			0.08			0.01			0.02	
MAE			0.18			0.10			0.06			0.08	
RMSD			0.26			0.12			0.07			0.09	

$$\begin{aligned} \mathsf{E}\mathsf{A}_1 &= \mathsf{E}^{\mathsf{anion}} - \mathsf{E}^{\mathsf{neutral}} \\ \mathsf{E}\mathsf{A}_k &\simeq \mathsf{E}\mathsf{A}_1 + \mathsf{v}_{k-1}, \ k = 2, 3, \ldots \end{aligned}$$

 \triangleright ξ : steepness of absorbing potential

• E.g., if $\xi = 0.5 \text{ Ha}^{-1}$ a MO 1 eV above ϵ_0 would have a lifetime of 1.3 fs, and thus FWHM of \sim 1 eV in the spectrum

Proudly Operated by **Battelle** Since 1965