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NUCLElI Awards / Recognition 201 3

Gaute Hagen: DOE early career award

ficieiitne art roscopic calculations of weak processes in nuclel”
. R
Rﬁ’ Hai Ah Nam: showcased in

DOE Women@Energy feature

Stefano Gandolfi: [UPAP
hi@lmsocientist Prize

Alessandro Lovato: PhD thesis award
“ab-initio calculations of nuclear matter
properties”
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Path Integral Studies of
Structure and Dynamics in Nuclear Physics

Basic Structure of the calculations
QMC at very large scales
Ground and low-lying states
Form Factors and EVV transitions
Inclusive Scattering and Response
Summary and Outlook
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Basic |dea: project specific low-lying states from
initial guess (or source)

Vg =exp |[—HT7| Y

Use Feynman path integrals to compute propagator
exp [—HT| = Hexp[—H(ST]

where the high-T (short-time) propagator can
be calculated explicitly.

Applications: condensed matter (Helium, electronic systems, ...
nuclear physics (light nuclel, neutron matter,...)
atomic physics (cold atoms,...)



Algorithm:

Branching random walk in 3A (36 for '“C) dimensions
Asynchronous Dynamic Load Balancing (ADLB)

Fach step moves |2 particles and updates
()
Z
significant linear algebra for each step
tuned by physicists and math/CS staff at ANL

complex amplitudes (2 GB for '2C gs)

Similar branching random walk with linear algebra
used In condensed matter physics (lattice calculations)

See current INT program on QMC for non-relativistic systems:
http://int.phys.washington.edu/PROGRAMS/current.html



Advancing from Blue Gene P to Blue Gene Q

e ADLB under UNEDF resulted in code working well on BG/P:
— 2 Gbytes and 4 cores (each one thread) per node
—12C(0") needs 2 Gbytes so OpenMP used for the 4 cores (threads)
— ADLB gives excellent scaling to 32,768 nodes

e BG/Q offers new possibilities and challenges
— 16 Gbytes, 16 cores (each 4 threads) per node
— 48 x 1024 nodes

—12C(0™): 8 ranks/node (8 threads each) or 4, 2, or 1 (64 threads)
— Other 'C states need much more memory/rank (T'=1: 14 Gbytes)




ADLB (Asynchronous Dynamic Load Balancing)

Large-scale load-balancing is provided to GFMC by the
Asynchronous Dynamic Load Balancing (ADLB) library.

ADLB is a library that implements a scalable version of the
venerable master/slave parallel programming model for load
balancing.

There is no master process; rather, a subset of application
processes in constant communication with one another is used
to manage a shared pool of work units.

Application processes create and put work units into this pool
and get and process work units from this pool.

Sophisticated (i.e. complicated) process-load balancing,
memory-usage load balancing, and message-traffic load
balancing algorithms are used to achieve scalability without
burdening the application programmer.

ADLB uses MPI and is also compatible with other MPI usage by
the application.

ADLB is particularly applicable when work units do little
communication with one another and are of widely varying size
and computational complexity.

ADLB is also used as the execution engine for the parallel
scripting language Swift.

ADLB is available for downloading http://www.cs.mtsu.edu/
~rbutler/adlb . It includes documentation and example codes.
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OpenMP Strong Scaling: BG/Q (MIRA)
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Combination of ADLB/MPI and OpenMP working very well



ADLB/ GFMC weak scaling

Experiments find best hybrid configurations 4 MPI ranks per
node and |6 threads per rank

.
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Number of MPI ranks

6 (now 8) threads per core >2 M threads total

Future developments: use of new MPI-3 features
for shared memory and remote memory access



E(t) (MeV)

Ground and Hoyle State

RMS radius
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0+ excrted state near triple-alpha threshhold
postulated by Fred Hoyle to explain nuclear abundances

Pieper, Wiringa, Carlson, Lusk,



2C Electromagnetic Form Factor
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Lovato, Gandolfi, Butler,
Small role for two-nucleon currents  “2rison tsc RicpeiECEEE

: arXiv: | 305.6959
Excellent agreement with data
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Ground State - Hoyle State
Transition form factor

12C - M(E0) - AV18+IL7 - one-way orthog. - f(k) - 9 May 2013
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Fundamental Symmetries

Superallowed Beta Decay in A=10
10 10 ST, b
C — '"B FERMI BETA DECAY aeT® o
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CIB terms f 1 '
VMC GFMC
AV18 + IL7; Cluster Ur: Used to tesi @i
Coulomb 00122(5)  .00157(43) .
All E&M .00133(5) .00216(24) and examine
Coulomb + Strong 00142(6) .00273(23) e
Full CIB 00274(4) 00412024y UNitarity of the
AV18 +IL7; SM. Uy C KM miaiters
Full CIB 00168(4)  .00329(16)
AV8’,no Viir; SM. Ur:
Full CIB 00172(6)  .00282(23)
Following have only Coulomb
Towner & Hardy a) .0017
W. Satula, et al. b) 0065(14)
“Expt.” b) 0037(15)

a) Phys. Rev. C. 77, 025501 (2008); b) Phys. Rev. C 86, 054316 (2012)

Pieper and Wiringa



Electromagnetic Response in '2C

The electromagnetic inclusive cross section of the process

e+2C e+ X

where the target final state is undetected, can be written in the Born

approximation as

d20' . Oé2 Eel
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Leptonic tensor

Ly = 2[kuk], + ku k), — g0 (kK]
Hadronic tensor
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X

It contains all the information on target structure.
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Longitudinal Sum Rule
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a (fm™)

new Jlab experiment soon, also neutrino experiments
again small role for two-nucleon currents



Transverse Sum Rule

2.0
1.5F
I ~o- —o ]
@ 1 W exp+tail + ;)
ex o —
mhl-o: Ig Jle B g_o0—" — —0— O~ ]
o Jipian
e I, ., tderiv | ovato, Gandolfi,
0.57 s ] Butler, Carlson, Lusk,
- _o” N Pieper, Schiavilla
el 00 02 04 06 08 1.0] arXiv:1305.6959
000‘ ! ! ! ! I ! ! ! ! I ! ! ! ! I ! ! ! !
0 1 2 3 4

q (fm’)
Two-nucleon currents contribute ~ 509 enhancement
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Neutrino/Anti-neutrino Scattering
5 response functions
Neutral current sum rules for Li 2
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Beyond Sum Rules:
Real-time response

R(g,w) = (0| j%(q) |£){f] i(q) 10) 6(w — (Ef — Ey))
R(g,w) = (0] j'(q) expliwt] j(g) |0)

Imaginary-time correlator (Euclidean Response)
Rig,7) = (013(a) exp[-H7] i(g) 0)
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Challenge:
Extract as much information as possible
from Iimaginary-time matrix elements
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example from cold atom physics - unitary Fermi gas

Include analytic constraints, work with Higdon and others



Conclusions

lattice approaches,

EM transitions and response
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Working closely with math/CS and SciDAC institutes:
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Alessandro Lovato - QMC math/CS and physics
Hal Ah Nam - diverse projects in NUCLEI
and ties to ScIDAC institutes



