Highlights of QUEST Developments and Partnership Activities www.quest-scidac.org

H. Najm¹, B. Debusschere¹, K. Chowdhary¹, R. Moser², V. Carey²,

¹Sandia National Laboratories, Livermore, CA & Albuquerque, NM ²University of Texas, Austin, TX

> SciDAC PI Meeting 24–26 Jul 2013 Rockville, MD

Outline

- PES Edge Plasma Partnership
- 3 BER Atmospheric Modeling Partnership

.≣⇒

Key Elements of our UQ strategy

- Probabilistic framework
 - Uncertainty is represented using probability theory
- Parameter Estimation, Model Calibration
 - Experimental measurements
 - Regression, Bayesian Inference
- Forward propagation of uncertainty
 - Polynomial Chaos (PC) Stochastic Galerkin methods
 - Intrusive/non-intrusive
 - Stochastic Collocation methods
- Model comparison, selection, and validation
- Model averaging
- Experimental design and uncertainty management

QUEST Team

Institution	Participants	
SNL	H. Najm, M. Eldred, B. Debusschere, J. Jakeman, K. Chowdhary, C. Safta, K. Sargsyan	
USC	R. Ghanem	
Duke	O. Knio, O. Le Maître, F. Rizzi, J. Winokur	
UT	O. Ghattas , R. Moser, E. Prudencio, A. Alexanderian T. Bui-Thanh, K. EHiroms, N. Petra, G. Stadler	
LANL	D. Higdon, J. Gattiker	
МІТ	Y. Marzouk, P. Conrad, T. Cui, A. Gorodetsky, M. Parno	

æ

Team Expertise and Capabilities

Institution	titution Expertise	
SNL Forward and inverse UQ methods, design under uncertainty		Dakota Uqtk
USC Intrusive UQ methods probabilistic modeling		
Duke	Duke Sparse adaptive forward UQ methods	
UT	Large scale inverse problems validation, inverse UQ	QUESO
LANL Gaussian process modeling, inverse UQ		GPMSA
МІТ	Calibration, adaptive sampling, inverse UQ, experimental design	MUQ

æ

◆□ > ◆□ > ◆豆 > ◆豆 > -

Recent Progress

Software development & integration: SNL, UT, LANL, MIT DAKOTA, QUESO, UQTk, GPMSA, MUQ

Algorithmic developments:

٩	Hierarchical sparse grid interpolation	SNL
٩	Adaptive basis & sparse representations	USC, Duke, MIT
٩	Compressive sensing, sparsity, & multifidelity	SNL
٩	Missing data & sparse random fields	SNL
٩	Gradient based optimization and MCMC	Duke, MIT
٩	Conditional polynomial representations	USC
٩	Bayesian additive regression trees for massive	data LANL
۲	Extreme scale Bayesian inverse problems	UT
٩	Kernel approx. & discontinuity detection in hi-D	О МІТ

イロト イポト イヨト イヨト

QUEST Partnerships

DOE	Project Title	Lead PI	QUEST
FES	Center for Edge Plasma Physics	C.S. Chang	Moser
	Simulation (EPSI)	Princeton	UT
FES	Plasma Surface Interactions: Bridging	B. Wirth	Higdon
	from the Surface to the Micron Frontier	ORNL	LANL
BER	Predicting Ice Sheet & Climate Evolution at Extreme Scales (PISCEES)	P. Jones LANL	Eldred, Ghattas SNL, UT
BER	Multiscale Methods for Accurate, Efficient & Scale-Aware Earth System Modeling	B. Collins LBNL	Debusschere SNL
NP	Nuclear Computational Low Energy	J. Carlson	Higdon
	Initiative (NUCLEI)	LANL	LANL
HEP	Computation-Driven Discovery	S. Habib	Higdon
	for the Dark Universe	ANL	LANL
HEP	Community Project for Accelerator	P. Spentzouris	Prudencio
	Science & Simulation (ComPASS)	FNAL	UT

æ

◆□ > ◆□ > ◆豆 > ◆豆 > -

EPSI-QUEST UQ Participants

- C.S. Chang, Princeton EPSI PI
- Robert Moser, UT-Austin QUEST Center Lead
- Martin Greenwald, MIT
- Suenghoe Ku, Princeton
- Julian Cummings, Caltech
- Varis Carey, UT-Austin
- Devon Battaglia, Princeton

EPSI Overview

C.S. Chang

Poloidal cross-section at a constant toroidal angle

Poloidal magnetic flux label $\psi(r)$: 1 at r/a=1, 0 at r/a=0

QUEST

Key Problem: Understanding Edge Physics

- Plasma near material wall must stay cold
- Temperature slope limited by turbulent transport
 - Ion Temperature(*T_i*) too low if fusion core in L-mode
- ITER based on "H-mode" pedestal
 - experimental, Wagner 1982
- Steep pressure gradient induces edge localized modes
- Underlying physics and inherent uncertainties must be understood

EPSI-QUEST Partnership Plan

Primary Thrust

- Identify key model sensitivities for gyrokinetic code XGC-1
- Validate/invalidate hierarchy of physics in XGC-1
 - Initial UQ focus: Ion Temperature Gradient (ITG) turbulence
 - 2 Enrich physics, guided by:
 - Validation studies
 - Edge profiles and fluxes

Secondary Projects: Validation/Reduced Order Modeling

- Improve uncertainty estimates for derived experimental quantities. (Martin, MIT) (*Provides both input profiles for* XGC-1 and validation observables)
- Perform calibration exercises for reduced physics model (Battaglia, Princeton). (Bayesian calibarion using QUESO)

(日) (四) (三) (三) (三)

Diagnostics of ITG Mode

Najm QUEST

Current Status

- Dedicated UQ branch of XGC-1, with access to richer physics as needed
- Postprocessing tools for 1D XGC-1 diagnostic outputs
- Scripts for XGC-1 interface with DAKOTA
- Initial sensitivity results for heating power, numerical parameters (particles, timestep)

Plans & Challenges

- Development of computationally tractable problems for UQ analysis, with QoI uncertainties that will be representaive of the full problem
- Seconday projects
 - Uncertainty in experimental data analysis
 - Bayesian calibration of reduced models

A B > A B >

< ∃→

BER Atmospheric Modeling Partnership

Multiscale Methods for Enabling Scale-Aware Capability in CESM – PI: William Collins (LBNL)

- QUEST: Bert Debusschere & Kenny Chowdhary (SNL)
- Multiscale Project Collaborator: Vincent Larson (UWM)

Project goal is to develop climate modeling capability with high fidelity down to scales of key features of interest: cloud systems and ocean eddies

- Variable resolution unstructured grids
- Multiscale parameterizations of microphysics
- Numerics geared to next-generation comp. architectures
- Verification, validation and UQ

QUEST supports project UQ and statistics needs

- Provide expertise and tools for enabling UQ
 - Sensitivity analysis, surrogate modeling, forward UQ, calibration
 - Discussions ongoing regarding the selection of the proper QUEST tools
 - Calibration of CLUBB parameters with DAKOTA
 - GPMSA for multi-fidelity calibration
- Quadrature approaches to account for subgrid variability in microphysics
 - Subgrid variability modeled through assumed distributions for the microphysics parameterization inputs
 - Efficient approaches needed to compute averages of microphysics over grid box

프 에 에 프 어 - -

Traditionally, random sampling can be used to account for sub-grid physics variability

Autoconversion: conversion of cloud droplets to rain droplets – measured as a rate of mass transfer

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ∃→

Quadrature approaches show significant improvement to sub-grid physics calculations

We can replace Latin Hypercube sampling with a quadrature based approach.

Latin Hypercube Sampling vs Quadrature

Figure: Using a quadrature approach, we can bypass the random sampling and calculate the Autoconversion mean using far fewer points, with even greater accuracy.

Applying quadrature based approaches to other microphysics processes

- We want to apply this quadrature technique to all microphysics processes with relevant sub-grid variability
- Each process has 1-3 uncertainty parameters
- There are ~14 uncertainty parameters in total
- Two implementation approaches
 - Use NCAR's sub-column approach
 - Samples all microphysics simultaneously
 - Would require all microphysics to use the same number of quadrature points
 - 2 Integrate each microphysics process separately
 - Low-dimensional quadrature tailored to each microphysical process
 - Requires all microphysics to be implemented in separate subroutines

Example Microphysics Processes

Average evaporation/ condensation rate of cloud water and ice Autoconversion of cloud ice to snow

- Accretion of cloud water by snow
- Accretion of cloud water by rain
- Freezing of cloud droplets and rain
- Evaporation/ sublimation of precipitation

Integrating each microphysics process separately

In many microphysics processes in a global circulation model like CAM, the number of variable sub-grid parameters is a model choice

Example Microphysics Processes	# of uncertain sub grid pa- rameters	Likely # of quadrature points needed
Average evaporation/ condensation rate of cloud water and ice	3	$4 \times 4 \times 4$
Autoconversion of cloud ice to snow	1	4
Accretion of cloud water by snow	3	$4 \times 4 \times 4$
Accretion of cloud water by rain	2	4×4
Freezing of cloud droplets and rain	2	4×4
Evaporation/ sublimation of precipitation	3	$4 \times 4 \times 4$

- For calculation of the mean, 4 quadrature points is equivalent to approximating the function of interest with a 7th order polynomial.
- The choice of the number of quadrature points is a trade off between accuracy and cost. However, even a four point quadrature approach shows drastic improvements over Latin Hypercube sampling for the autoconversion mean.
- We are working with Vince Larson (UWM) to prototype this approach in CLUBB.

Creating a higher level function that maps the inputs directly to the sub-grid microphysics quantities

5D Mapping (projected in 2D)

- This higher level mapping would allow us to bypass the on-the-fly calculation of microphysics completely, with potential for improvements in both speed and accuracy.
- The mapping can built from a predetermined set of quadrature points or by a growing set of random samples collected over the course of the simulation.

Figure: We can create a higher level 5D function that maps the means and variances of s and N directly to the autoconversion mean. We can use the same mapping as a proxy for the autoconversion mean at every time step.

イロト イポト イヨト イヨト

UQ algorithms impacting simulation of climate physics

- Quadrature offers a promising approach to account for microphysics subgrid variability with high accuracy and reasonable numbers of samples
- Currently exploring the application of this to all microphysics processes with relevant sub-grid variability
 - CLUBB single column model considered for initial implementation
- Application of QUEST tools in other climate physics areas under discussion

프 🖌 🛪 프 🛌

Closure

- Broad range of ongoing work on UQ software and algorithms development
- A number of SciDAC partnership activities
- Highlighted two example partnerships

Partnerships using UQ methods/tools for:

- Global sensitivity analysis
- model calibration and validation
- microphysics modeling
 - Improved accuracy and computational performance