SciDAC – PSI:

Plasma Surface Interactions Involving He

Brian D. Wirth^{*,#}, on behalf of

Presented at 2013 SciDAC-3 PI Meeting Rockville, MD

LARORATORY

Pacific Northwest NATIONAL LABORATORY

National Laboratory

26 July 2013

UC San Diego

* bdwirth@utk.edu

SciDAC Project Web Site: https://collab.mcs.anl.gov/display/PSIscidac/

This work is supported by the U.S. Department of Energy, Office of Fusion Energy Sciences and Advanced Scientific Computing Research (ASCR) through the SciDAC-3 program.

*The Challenge of Plasma Surface Interactions**

• Plasma facing components (PFCs) must remove plasma exhaust, which involves unprecedented power and particle fluxes & fluences, while limiting release of impurities to core plasma

ITER Plasma Material Interface

Key Issues

- **Erosion lifetime and** plasma compatibility
- **Tritium inventory**
- Thermal transients
- H/He blistering
- **Heat removal**
- **Fabrication technology**
- Neutron damage

Leading candidate materials **PFC and Divertor**

- \cdot Be, W, (C?) Structural components
- Fe-Cr steels, V-Cr-Ti, SiC

bulk plasma: impurity tolerance $W < 2 10⁵$, reactor < 10⁴ Be. C: 10-2

first wall: modest flux of high energy
neutral particles (100s eV), low energy ions

divertor target: high heat flux 10 (20) MW/m² transient heat loads: e.g. ELMs, disruptions

Additional challenge involves chemistry evolution, as well (erosion, transport, re-deposition)

***Ref: H. Bolt, Max-Planck Institute for Plasma Physics, Garching, Germany**

SciDAC – PSI Objectives & Approach

• Develop simulation capability for plasma surface interaction across three coupled spatial regions:

- **Edge/scrape-off-layer region of the plasma (X. Tang, J. Canik)**
- **Near surface material response to plasms exhaust, with neutron damage and influenced/ coupled to plasma sheath (B.Wirth, B. Uberuaga, D. Maroudas)**
- **Structural materials response to intense, 14 MeV-peaked neutron spectrum (R. Kurtz)**
- **Experimental validation interface/database (V. Chan, D. Ruzic)**

• Simultaneous 'bottom-up' and 'top-down' approach to multiscale modeling that integrates SciDAC institute capability into both particle and continuum based codes, and develops from scratch a new code, Xolotl for PSI

• Explore the 'hand-shaking' between plasma and materials models across these interfaces

Plasma edge/scrape-off layer: SOLPS

• Plasma modeling utilizes both particle- and continuum-based approaches

- Near surface sheath region treated with particle-in-cell code (VPIC); kinetic approach needed to caclulate particle trajectories, electric & magnetic fields

- Plasma/neutral transport in pre-sheath edge/scrape-off layer simulated using SOLPS code*

- 2D transport: radial & poloidal
- Fluid equations solved for plasma ions
- Classical transport parallel to magnetic field
- Neutral transport by Monte Carlo
- EIRENE simulates PSI (eventually replaced by Xolotl) $\left(\frac{n_o T_{\text{e}}}{T_{\text{p}} \Gamma_{\text{Pre}}}\right)$

SOLPS performance on KIDS

* Schneider, CPP 2006 **• Evaluation of SOLPS performance (Roth)**

Lots of time spent on i/o, waiting

- DZNPNL 10.0% 13.3% Loop at b2news.f:355
- function loop evaluation: HPC toolkit (http://hpctoolkit.org)

Solid Surface Modeling Roadmap

Low temperature $(<$ ~1000 K) regime of low-energy $($ ~100 eV) He (later mixed He-H) plasma exposure to tungsten, focused on bubble formation, growth & over-pressurization leading to tungsten surface morphology changes

Key Physics Questions:

- Rate effects (AMD, MD and KMC) versus continuum reaction-diffusion & experiment
- Dilute limit approximations in concentrated He bubble populations
- Biased/drift diffusion (elastic strain field interactions that add drift term to diffusional flux)
- Multiscale integration

*Thermodynamics & kinetics of small He clusters**

- **Atomistic simulations (AMD, MD, statics) used to identify unit transport/reaction mechanisms**
- Challenges relate to multitude of pathways with increasing cluster size
4-He cluster migration: Thermodynamic

• Ken Roche initiated effort with AMD team to evaluate/improve code performance

* Uberuaga et al., manuscript in preparation

*Surfaces modify behavior of small He clusters**

• Atomistic simulations identify 'drift diffusion' interaction of He clusters with surfaces/ extended defects, and modification of kinetics by 'trap mutation'

Di-helium interaction with (100) surface

^{*} Hu et al., manuscript in preparation

Atomistic investigation of early stage He bubble evolution

- **Tungsten with (100) or (111) surfaces**
- **Periodic boundaries in the x, y directions and Free Surface in z**
- **Single crystals versus specimens containing** Σ**3 or** Σ**5 grain boundaries (intersect surfacee)**
- **Every 10 ps a He atom is added according (implanted) based on He depth distribution of 60/100eV He flux**
- **Temperatures between 500-2000K**
- **10 simulations for each temperature**
- \cdot \rightarrow Quantify He cluster/bubble **size distributions as a function of time/fluence**

*Bubble growth & bursting: (100) Surface at 2000 K**

* Sefta, Hammond, Juslin and Wirth, *Nuclear Fusion* 53 (2013) 073105 bubbles (R_o, P, etc)

Bubble growth & bursting: (100) Surface w Σ*5 boundary at 2000 K*

* Sefta, Juslin and Wirth, *JPCM* (2013) submitted.

Impact of He implantation flux & temperature

• Bubble formation, growth by 'trap mutation'/loop punching & bubble bursting identified as key phenomena in smaller scale MD studies, effect of He implantation rate

*Impact of He bubble growth rate on rupture**

• Parallel replica dynamics used to evaluate impact of He bubble growth rate on bubble rupture conditions: Initial 8 He cluster (1.8 nm below surface) simulated with varying rates of He addition to cluster/bubble at 1000 K

Initial position

c)

- 'trap mutation', loop punching
- surface modification from adatoms/islands
- bubble bursting

* Sefta, Hammond, Juslin and Wirth, *Nuclear Fusion* 53 (2013) 073105; Sefta, Juslin and Wirth, *JPCM* (2013) submitted; Sandoval et al., in preparation

PARASPACE and Xolotl:

Spatially-dependent reaction-diffusion models

Large set of coupled, PDE's that are spatially discretized (Paraspace) and solved using sparse-matrix, implicit time Integration: Future will utilize finite element solutions with

$$
\frac{\partial C_i}{\partial t} = P_i(\vec{x}) - \vec{\nabla} \cdot \vec{J}_i + GR_i(\vec{x}) - AR_i(\vec{x}) = P_i(\vec{x}) + \vec{\nabla} \cdot \left(-\frac{D_i \vec{F}}{kT} C_i + D_i \vec{\nabla} C_i \right) + GR_i(\vec{x}) - AR_i(\vec{x})
$$

* Reaction events are non-linear (quadratic) but 'local', reaction rate densities described by classical, dilute limit reaction-diffusion theory

* Current approach utilizes finitedifference to obtain large, sparse-* Current approach utilizes finite-
difference to obtain large, sparse-
matrix which is solved using a linear
and the subset of the subset of a linear solver using open-MP & backward difference time integration * Future: finite element formalism, implicit-explicit (IMEX) ODE solvers and/or differential variational inequality (DVI) solvers in (PETSc)

Simulation & experimental thermal desorption of W irradiated with 5 keV Kr, followed by 250 eV He

*Theoretical analysis of He clustering/bubble formation**

• He cluster dynamics described by reaction – diffusion equation in a half-space

$$
\frac{\partial C_k}{\partial t} = D_k \frac{\partial^2 C_k}{\partial x^2} + \sum_k KCC + S(x)\delta_{1,k}
$$

• Making use of He cluster dynamics (e.g., fast diffusion of small clusters, trap mutation at $k=7$)

• Using normalizations:

$$
\hat{\mathbf{t}} = \mathbf{t} \mathbf{K}_1 \mathbf{C}_s \qquad \hat{\mathbf{D}}_k = \mathbf{D}_k / \mathbf{D}_1 \qquad \hat{\mathbf{K}} = \mathbf{K} / \mathbf{K}_1
$$

$$
\hat{\mathbf{x}} = \mathbf{x}/\ell_{1,1} \quad \hat{\mathbf{C}}_{k} = \mathbf{C}_{k}/\mathbf{C}_{s}
$$

• To obtain reduced set of governing equations:

$$
\frac{\partial \hat{C}_k}{\partial \hat{t}} = \hat{D}_k \frac{\partial^2 \hat{C}_k}{\partial \hat{x}^2} + \sum_k \hat{K} \hat{C} \hat{C}, \qquad \hat{C}_k(\hat{x} = 0) = \delta_{1,k}
$$

 which can be assessed theoretically, as well as compared to more detailed numerical simulations

* Krasheninnikov, Faney and Wirth, *Nuclear Fusion* (2013) submitted

*Theoretical analysis of He clustering/bubble formation**

• Qualitatively, this initiates a 'plug' of helium bubbles that grows towards the surface and blocks deeper diffusion of He – idea supported by detailed numerical simulations

*Xolotl code**

- Xolotl (SHO-lottle) is the Aztec god of lightning and death
- Developed from 'scratch' for this project, designed for HPC current & emerging architectures (multicore, multicore + accelerator(s))
- Strong engagement with SDAV, SUPER, FastMATH, QUEST during code design and development, thus integrated performance measurement, in-situ analysis & visualization; providing a design with resilience features, checkpoint/research and more
- Leveraging PETSc, MOAB, VisIT and other Institute software
- Developed in C++ with MPI for initial 1D finite difference. 1D and 2D R-z FEM to follow, along with OpenMP, CUDA, OpenCL and OpenACC
- Challenge: Large number of clusters/species (1000's versus 4-5) at each grid point

$$
\frac{\partial C_i}{\partial t} = P_i(\vec{x}) - \vec{\nabla} \cdot \vec{J}_i + GR_i(\vec{x}) - AR_i(\vec{x}) = P_i(\vec{x}) + \vec{\nabla} \cdot \left(-\frac{D_i \vec{F}}{kT} C_i + D_i \vec{\nabla} C_i \right) + GR_i(\vec{x}) - AR_i(\vec{x})
$$

$$
GR_i(\vec{x}) = \sum_{j,k} k_{jk}^{\dagger} C_j C_k + \sum_j k^{\dagger} C_j \qquad AR_i(\vec{x}) = C_i \sum_j k_{ij}^{\dagger} C_j + k^{\dagger} C_i
$$

- Most species only involved in reactions (off diagonal blocks) but local
- Requires highly accurate Advection-Diffusion-Reaction (ADR)
- Large-scale nature of 3D, ITER divertor PSI problem, $O(10^3 \text{x}10^3 \text{x}10^3 \text{x}10^4)$ requires HPC to Exascale computing
- * Xolotl Web Site: https://sourceforge.net/projects/xolotl-psi/

Xolotl – FASTMath interaction developing solution methods

Solution strategy: Solved with implicit or semi-implicit ODE integrator, Newton based nonlinear solver and multi-grid based linear solver

- Leverages ODE IMEX infrastructure in PETSc
- Links to hypre multigrid solvers

Outstanding questions:

- Large, but sparse matrix of reaction terms may be leveraged (GPUs?) optimal parallelization strategy remains to be determined
- Unclear whether standard multigrid will be sufficient for highly accurate solutions

• Strong interaction developed in Dec 2012, after Xolotl math document* was finalized, and PETSc team developed ADR solver protoype (our Christmas miracle) --- very strong interactions continue on solver issues and code design

• MOAB – PETS cintegration within FASTMath will be heavily leveraged and engaged in transitioning Xolotl 1D finite difference to 1D $\&$ 2D (R-z) FEM

^{*} https://docs.google.com/document/d/1Ssm3gja35IeGsCxcZoKcAHOOGUf7S_4sV3DbKooSEt8/edit?usp=sharing

Xolotl – QUEST interactions

Following participation in QUEST annual meeting (April 2013), Xolotl team began close engagement with QUEST to further develop appropriate UQ strategy

Initial ideas involved intrusive UQ using adjoint analysis – However significant implementation challenges because of canards within our ADR system (e.g., strongly exponential diffusivities)

QUEST review of Xolotl math document* resulted in a comprehensive strategy we are pursuing jointly with QUEST to perform non-intrusive UQ using DAKOTA and QUESO

* https://docs.google.com/document/d/1Ssm3gja35IeGsCxcZoKcAHOOGUf7S_4sV3DbKooSEt8/edit?usp=sharing

*14 MeV neutron damage in bulk tungsten**

• Large database of defect production in energetic displacement cascades developed in tungsten and body-centered cubic material

Kinetic Monte Carlo simulations: kSOME

- **kSOME code under-development at PNNL (Nandipanti, Roche and Kurtz) 'Object' Monte Carlo codes in materials science are traditionally sequential/single processor. Ken Roche working on optimizing algorithm and parallelization:**
- Identified unstructured I/O and related data tracking to improve performance
- Initial parallelization focused on threaded approach to update reaction tables simultaneously (rather than sequentially): Strong scaling realized
- Optimization demonstrated that 320 nm x 320 nm x 35 nm simulation cell simulated to 4 seconds during 1 MeV Kr ion irradiation of thin foils which requires 160 Million MC steps went from 52.5 hours CPU time (original) to 32.5 hours (CPU + box method data tracking + pthreads) $\&$ verified against other methods*
- Implemented prototype kSOME with mutually inclusive parallel execution modes:
	- Distributed memory over distinct configurations;
	- Distributed memory within particular configurations
	- Shared or distributed memory update evolving defects
- Experimenting with improved table queries and defect evolution for GPU

- Strong interactions within team & with SciDAC Institutes
- Initial discovery science to provide mechanistic understanding of W surface dynamics under low-energy He plasma exposure & initial integration with experimental efforts
	- Characterized thermodynamics/kinetics of small He clusters
	- Discovery of surface topological changes (ad-atom, loop punching, bursting) & He bubble evolution using MD - Initial MD/AMD studies to evaluate rate effects on He agglomeration kinetics (10²⁷ to $4x10^{25}$ He/(m²-s)) and bubble growth/burst mechanisms (10-103 He/ns)
	- Theoretical analysis indicates need to go 'beyond the dilute limit'
	- Development of new KMC code (kSOME) & continuum PSI simulator (Xolotl); strong engagement with Performance/Optimization, (SUPER), ADR solvers in PETSc (FASTMath), SDAV & QUEST
	- Next steps for Xolotl move to FEM & engage MOAB (FASTMath)

• Successful completion of the project (2017) will provide simulation tools to evaluate tungsten-based plasma facing component and divertor components in a burning plasma environment.