

PIC for Accelerator Science

James Amundson

Fermilab

For the ComPASS Collaboration

The ComPASS Collaboration

Community Project for Accelerator Science and Simulation

- To enable scientific discovery in HEP, high-fidelity simulations are necessary to develop new designs, concepts and technologies for particle accelerators
- Under SciDAC3, ComPASS is developing and deploying stateof-the-art accelerator modeling tools that utilize
 - the most advanced algorithms on the latest most powerful supercomputers
 - cutting-edge non-linear parameter optimization and uncertainty quantification methods.

This talk

- PIC methods
- Two closely related application areas
 - Beam Dynamics
 - Advanced Accelerators
 - Require tracking particles interacting with fields calculated on grids
- HEP (Fermilab, UCLA) working with ASCR [FastMATH (LBNL), Fermilab, UCLA]
- Only one sub-topic of the ComPASS project. For a comprehensive overview, see SciDAC PI 2012 talk by Panagiotis Spentzouris

Application areas: Beam Dynamics and Advanced Accelerators

- Beam Dynamics
 - Existing and planned accelerators
 - Complex devices that need to be simulated for long times
 - Accelerators can have 1000s of elements
 - 1000s to 1000000s of revolutions

- Advanced Accelerators
 - Next-generation acceleration technology
 - Huge field gradients promise dramatically smaller/cheaper accelerators
 - Two types
 - Plasma-wakefield acceleration (PWFA)
 - Laser-wakefield acceleration (LWFA)
 - Complex fields, short time scales

Application areas: Beam Dynamics and Advanced Accelerators

- Beam Dynamics
 - Internal + External fields
 - External field calculations trivially parallelizable
 - All P, no IC
 - Internal field calculations same as AA
 - Minimal bunch/field structure

- Advanced Accelerators
 - Pure PIC
 - Complicated bunch/field structure

Scaling achievements to date in beam dynamics and advanced accelerators

Beam Dynamics: scaling achievements

BG/P (Intrepid) cores

- Synergia
- **Fermilab** - Single- and multiple-bunch simulations

Synergia in production

Intrepid Machine St <u>File Edit View History Bookmarks Tools H</u> elp	tate - ALCF Gronkulator - Mozilla Firefox
Job Scheduling Policy on BG/ X L. Accelerator Simulations Clus X	
Status.aict.ani.gov/intrepid/activity	
Most Visited → Fermilab → Eric's bookmarks → python → 🕅	Poctave w Wikipedia 🥝 7-Day Forecast for
Argonne National Laboratory	ctivity LEADERSHIP COMPUTING
Home Intrepid Activity	
R00 R01 R02 R03 R04 R05 R06 R07 M1	Running Jobs Queued Jobs Reservations Total Running Jobs: 7
	Job Id Project Run Time Walltime Location Queue Nodes Mode 637184 PetSimSuper 11:26:44 12:00:00 ANL-R06-M0-512 prod-long 512 vn
R10 R11 R12 R13 R14 R15 R16 R17	637193 PetSimSuper 10:32:38 12:00:00 ANL-R06-M1-512 prod-long 512 vn 636503 ParDhuGim 10:04/157 13:00:00 ANL-R06-R03-4006 prod-long 4006 cript
	637194 PetSimSuper 09:54:28 12:00:00 ANL-R07-M1-512 prod-long 512 vn
	636866 ParPhySim 09:17:35 12:00:00 ANL-R10-R47-32768 prod-capability 32768 script 637151 SiliconeRubberAlt 03:41:37 06:00:00 ANL-R07-M0-512 prod-short 512 script
	636542 DirectNoise 01:21:03 06:00:00 ANL-R04-R05-2048 prod-short 2048 script
R20 R21 R22 R23 R24 R25 R26 R27 M1	
R30 R31 R32 R33 R34 R35 R36 R37	131,072 + 16,384 = 147,456 cores
R40 R41 R42 R43 R44 R45 R46 R47	

ComPASS

Advanced Accelerators: scaling achievements

How we achieved scaling in Synergia

- Challenge: beam dynamics simulations are big problems requiring many small solves
 - Typically $64^3 128^3$ (2e5 2e6 degrees of freedom)
 - Compare with 2.5e10 in OSIRIS scaling benchmark
 - Will never scale to 1e6 cores
 - Need to do many time steps (1e5 to 1e8)
- All "scaling" advice we received was with respect to grid size
 - Included decomposing particles by grid location
 - In beam dynamics, external fields can cause particles to move over many grid cells in a single step
 - Communication required to maintain decomposition and load balancing
 - Point-to-point communication
 - Complicated for both programmer and end user
 - » Change in physical parameters can change communication time by x100

- Eliminate particle decomposition
 - Requires collective communication
 - But not point-to-point
 - Big machines are optimized for collectives
 - Simpler for programmer and end-user
 Helps a little, but leads to...
- Breakthrough: Redundant field solves (communication avoidance)
 - Field solves are a fixed-size problem
 - Scale to 1/nth of problem

Synergia: communication avoidance

- Communication avoidance
 - Used to have two global communications
 - collect charge density
 - broadcast calculated field (x3 dimensions)
 - Fields are now limited to a small set of cores, so the latter is greatly reduced
- Allows scaling in number of particles
 - Not limited by the scalability of the field solves
 - Excellent (i.e., easy) scaling

Synergia: large numbers of particles

- Many reasons to use more particles and/or more complex particle calculations
 - Accuracy of long-term simulations
 - Statistical errors in field calculations become more important as the number of steps increases
 - Detailed external field calculations
 - Significant feature of Synergia
 - Application-dependent
 - Accurate calculation of small losses
 - High-intensity accelerators require very small losses
 - Calculating 1e-5 losses at 1% requires 1e9 particles

Synergia: new scaling opportunities

- Multi-bunch wakefield calculations
 - Excellent scaling
 - Bunch-to-bunch communications scale as O(1)
 - Also relatively small
 - Already discovered multibunch instabilities in the Fermilab Booster
 - Not accessible with "fake" multi-bunch
- Parallel sub-jobs
 - Parameter scans, optimization
 - Part of our workflow system
 - Makes it easier on end user
 - Avoids error-prone end user editing of job scripts

- Scaling advances are the product of many factors
 - Redundant solves (communication avoidance) (x4x10)
 - Every simulation
 - Large statistics (x1-x1000)
 - Some simulations
 - Multiple bunches (x1-x1000)
 - Some simulations
 - Parallel sub-jobs (x1 x100)
 - Some simulations
- Product can be huge (x4 x1e8)

GPUs and multicore architectures

- GPUs and Multicore
 - Shared memory is back!
 - Some things get easier, some harder
 - Charge deposition in shared memory systems is the key challenge
- Multi-level parallelism very compatible with our communication avoidance approach

Advanced Accelerator simulations on GPUs and multicore

- We have developed an algorithm for GPUs which gives good performance and appears to be portable to other emerging architectures.
- It is based on dividing space into small tiles and requires a fast particle reordering scheme which is called every time step.
- Currently runs on NVIDIA GPUs and OpenMP multicore processors. Should run on Intel PHI.
- Different architectures require different implementations, but data structures are largely the same, and code can be recompiled with different libraries on different architectures.
- 2D Electrostatic and 2-1/2D Electromagnetic codes run on one GPU. 2D Electrostatic on multiple GPUs with MPI.
- Skeleton codes will be made available on the UCLA IDRE web site:
 - https://idre.ucla.edu/hpc/parallel-plasma-pic-codes

V. Decyk and T. Singh

- Benchmark with 2048x2048 grid, 150,994,944 particles, 36 particles/cell
- optimal block size = 128, optimal tile size = 16x16. Single precision
- GPU algorithm also implemented in OpenMP
- Electrostatic
- mx=16, my=16, dt=0.1
- Total speedup was about 35 compared to 1 CPU, and about 3 compared to 12 CPUs.

- Electromagnetic
- mx=16, my=16, dt=0.04, c/vth=10
- Total speedup was about 51 compared to 1 CPU, and about 4 compared to 12 CPUs.

	CPU:Inteli7	GPU:M2090	OpenMP(12 cores)
Push	22.1 ns	0.532 ns	1.678 ns
Deposit	8.5 ns	0.227 ns	0.818 ns
Reorder	0.4 ns	0.115 ns	0.113 ns
Total Particle	31.0 ns	0.874 ns	2.608 ns
	CPU:Inteli7	GPU:M2090	OpenMP (12
	CPU:Inteli7	GPU:M2090	OpenMP (12 cores)
Push	CPU:Inteli7 66.5 ns	GPU:M2090 0.426 ns	OpenMP (12 cores) 5.645 ns
Push Deposit	CPU:Inteli7 66.5 ns 36.7 ns	GPU:M2090 0.426 ns 0.918 ns	OpenMP (12 cores) 5.645 ns 3.362 ns
Push Deposit Reorder	CPU:Inteli7 66.5 ns 36.7 ns 0.4 ns	GPU:M2090 0.426 ns 0.918 ns 0.698 ns	OpenMP (12 cores) 5.645 ns 3.362 ns 0.056 ns

Beam dynamics simulations on GPUs and multicore

Fermilab Q. Lu, JFA

- *Nearly* the same problem as in AA
 - Particles can move many cells in between steps
- Optimal decomposition/deposition schemes differ

Charge deposition in shared memory

One macro particle contributes up to 8 grid cells in a 3D regular grid

Collaborative updating in shared memory needs proper synchronization or critical region protection

CUDA

- No mutex, no lock, no global sync
- Atomic add yes, but not for double precision types

OpenMP

- #pragma omp critical
- #pragma omp atomic
- Both very slow

CUDA

- Concurrency be an issue for GPU
- Memory bottleneck at final reduction

OpenMP

- Works well at 4 or 8 threads
- Scales poorly at higher thread counts

Sort particles into their corresponding cells using parallel bucket sort

Deposit based on color-coded cells in an interleaved pattern (red-black)

CUDA

- High thread concurrency
- Good scalability, even the overhead shows reasonable scaling
- No memory bottleneck
- Better data locality at pushing particles

OpenMP

 Non-trivial sorting overhead for low thread counts

Grid level interleaving

Advanced algorithms: two-grid schemes for PIC

- Using the same domain decomposition for the field solve grids and for the particle deposition results in load imbalance.
- For simulations for which the are a large number of particles per grid cell, we perform field solves and field-particle transfers with different grids.
- Particles handled with sorted spacefilling curve, transfers to local "covering set" grids (distributed sorting can be hard!)
- The transfer between the two sets of grids is done efficiently, since the amount of field data is small relative to the particle data.

.....

Advanced algorithms: method of local corrections

- Potential-theoretic domain decomposition Poisson solver compatible with AMR grids
- One V-cycle solver
 - Downsweep: build RHS for coarser grids using discrete convolutions and Legendre polynomial expansions
 - exploits higher-order FD property of localization
 - Convolutions performed with small FFTs and Hockney 1970
 - Coarse solve
 - Either MLC again, or FFT
 - Upsweep
 - Solve for Φ_h on boundary of patch
 - Interpolation and summations
 - Local Discrete Sine Transform Solve

BERKELEY LAB

BERKELEY NATIONAL LABORATORY

No iteration, accurate, no selfforce problems, large number of flops per unit of communication (messages and DRAM).

- PIC methods for accelerators now scale to the size of the biggest available machines
 - Multiple factors make this practical in production runs
- Working implementation of GPU/multicoreoptimized algorithms
- Advanced algorithmic research underway