Muons, Inc. Magnetron design, development, and manufacturing by Muons, Inc. (including update on NFE of DE-SC0013203)

> Rol Johnson Mike Neubauer Alan Dudas Grigory Kazakevich Milrorad Popovic Steve Kahn Tony Wynn (consultant CTL) Ron Lentz (consultant CTL) Haipeng Wang (JLab) Bob Rimmer (JLab)

Muons, Inc

Outline

- Introduction
 - Commercialization BHAG
- Magnetron RF Power Sources
 - 350 MHz (self funded)
 - 1497 MHz (NP STTR Phase I and II: DE-SC00013203 w JLab)
 - 2450 MHz testing new ideas
- Distributed Manufacturing
 - machine shops, magnets, brazing, welding, test facilities
- New Ideas
 - Sub-critical voltage operation
- Next Steps

- Muons, Inc. is a leading proponent of Superconducting RF (SRF) Accelerator-Driven Subcritical Reactors (ADSR) with Mu*STAR
- https://www.youtube.com/watch?v=dS2dq13fTMk
- High-power, efficient power sources needed to drive SRF cavities are major capital and operating expenses for such systems.
- Magnetron power sources, invented a century ago, can be the most cost-effective solution for ADSR if some limitations can be overcome.
- Efforts to address these limitations are discussed, including the 1497 MHz magnetron development project supported by an NP STTR grant to replace CEBAF klystrons.

Assembly – 1497 MHz

add cathode stem sub-assy

Muons, Inc. SRF Linacs need efficient microwave power

Muons, Inc. is developing power sources for Superconducting Radio Frequency Linacs First tests of two magnetrons underway now. Magnetrons are up to 90% efficient vs klystrons 50%. Capital cost 1/5 of klystrons

350 MHz 120 kW

- Replacement for Niowave's 30 kW tetrode
 - Injection locked with high-power circulator
- Industrial Applications
 - Indonesia: Kenneth Tan, Dawnyx Technologies

8/14/2019

NP Exchange Meeting - Rol

35

Modeling 350 MHz (continued)

Q_{ext} Simulations

8/14/2019

NP Exchange Meeting - Rol

Parts Status 350 MHz

350 MHz 140 kW CW 10" D

Program Status 350 MHz

- Anode complete awaiting Qext measurements
 - Reduced height coax to waveguide coax adapter delivered for single port calibration
 - May need additional hardware for two port calibration.
 - Deliver parts and assemblies to FIARC for Qext measurement by Milorad and/or Grigory?
 - Test facilities large enough for 350 waveguide parts
 - May need a lift to maneuver the anode carefully with antenna and components.
 - Assembly available for viewing.
- Cathode stalk is brazed needs filament welds.

Muons, Inc 1497 MHz AM magnetron for JLAB

- AMing the magnetron with magnetic field
- Modeling the eddy currents identified a need for a bi-metallic anode.
- Bi-metallic anode completed along with standard anode.
- Two magnetrons being built, soon to JLab
- Feed-back electronics developed by JLab
 - Bob Rimmer, Haipeng Wang

Eddy Current Calculations (Opera and Comsol)

Muons, Inc

Eddy Current Calculations (Opera and Comsol)

NP Exchange Meeting - Rol

Muons, Inc

Parts Status – 1497 MHz

Program Status-1497 MHz

- Standard and Bi-metallic anodes
 - completed awaiting last brazes
- Two Cathode Stalks at Heatwave for filament welding:
 - Jan: new moly parts needed to be made
 - Feb: prototype parts delivered to Heatwave
 - Mar: final parts delivered to Heatwave and test parts for molyto-iron weld
 - April: final SOW completed and PO delivered to Heatwave
 - June: Heatwave status parts being procured for test fixtures.
 - July: projected completion date 7/19

Cathode Stalk Completed

8/14/2019

Muons, Inc

Cycle Testing and Inspection

Date, Time	Voltage VAC	Amps	Power	Press. Torr	Pyro Temp. <u>Filament</u>	-
<u>7/16/19</u>						7/17/19 thermal cycling to test Ni braze joint
10:50	1.08	30.9				Cycle details:
11:00	1.190	29.2	34.748			4V, hold for 1 minute 6V, hold for 1 minute 8V, hold for 15 minutes power off, hold for 30 minutes repeat 10 cycles completed
11:15	2.010	39.7	79.797			
11:55	3.070	46.9	143.983			
12:30	4.040	57.6	232.704			
12:35	3.030	45.1	136.592		1460	
1:00	4.100	53.6	162.408		1604	
1:04	4.530	55.6	227.755		1657	
1:08	5.010	59.9	271.528		1742	no visible cracks in the Ni braze on the CRS/Mo joint
1:20	5.510	63.0	315.530		1772	
1:30	6.690	66.1	364.211		1834	measured pitch after thermal cycling from cathode end hat end: .109, .112, .112, .112, .112, .112, .112, .110, .109, .109
1:35	6.510	68.9	460.941		1920	
1:45	6.990	71.6	466.116		1993	
1:49	7.540	74.4	520.056		2033	
1:56	8.050	77.3	582.842		2110	
1:59	7.990	76.5	615.825		2098	
	0.000	0.0				

Distributed Manufacturing

- Piece parts from various suppliers
 - Machine shops primarily Grand Island Machining
 - Ceramics
 - Coorstek
 - B and H Technical Ceramics
 - Explosion bonding: high energy metals
- Brazing, bakeout, general assembly Altair
- Welding Heatwave
- Magnets Device Technologies
- Testing FIARC?

Muons, Inc New Ideas - tests at 2450 MHz

- Subcritical voltage operation
 - cathode voltage less than needed for self-excitation
 - Locking/control voltage sent in through antenna
 - adds to cathode voltage to control rf phase and power
 - Allows magnetron to act more like an amplifier

NP Exchange Meeting - Rol

Muons, Inc New Ideas - tests at 2450 MHz

- Subcritical voltage operation
 - Useful for pulsed operation

The black trace shows the magnetron voltage (1 kV/div), The red trace shows the detected locking signal of \approx 100 W, The green trace shows the magnetron output detected signal of \approx 330 W.

8/14/2019

NP Exchange Meeting - Rol

Test setup ready at JLab. Haipeng ready to test feedback system needed for microphonics control. If successful, replacement of klystrons could lead to 5-year payback in power savings.

Thanks to Michelle and Manouchehr for support

Muons, Inc.