NP LOW ENERGY FACILITIES AND THE SBIR/STTR PROGRAM

CLAYTON DICKERSON

Technical Manager Argonne Tandem Linear Accelerator System Argonne National Laboratory

DOE NP SBIR/STTR Exchange Meeting 13-14 August 2019

. DEPARTMENT OF NERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

OUTLINE

- Low energy nuclear physics
- DOE facilities
 - Overview
 - ATLAS/CARIBU
 - FRIB
- Instrumentation
- Summary
- Acknowledgements information provided by
 - Georg Bollen, Thomas Glasmacher, Dave Morrissey, Greg Severin, Brad Sherrill (FRIB/MSU)
 - Heather Crawford, Paul Fallon, Jackie Gates, Augusto Macchiavelli (LBNL)
 - Guy Savard (ANL)

LOW ENERGY NUCLEAR PHYSICS

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

LOW ENERGY NUCLEAR PHYSICS

4

- Refers to the energy scale of the science
 Of order few MeV (nuclear binding scale)
- Physics encompasses nuclear structure, decay, reactions and limits of nuclear chart
- Most direct impacts to our lives
 - Energy
 - Medicine
 - Security . . .

ANSWERING THESE QUESTIONS

- 1. Accelerator facilities
 - Diverse capabilities to deliver beams of stable and radioactive ions, at energies ranging from ~ 100 keV to GeV
- 2. Advanced Detectors and Instrumentation
 - High efficiency, high resolution detection systems for:
 - Light charged particles
 - Heavy charged fragments
 - Gamma-rays
 - Neutrons

RGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

 Data acquisition, software and data storage

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

Argonne

ACCELERATOR FACILITIES

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

RARE ISOTOPE BEAM FACILITIES WORLDWIDE

LOW ENERGY NUCLEAR PHYSICS FACILITIES

DOE National User Facilities

Argonne Tandem-Linear Accelerator System (ATLAS) - https://www.anl.gov/atlas

- High-intensity stable beams
 Radioactive beam program with stopped and reaccelerated fission products and in-flight beams
- Facility for Rare Isotope Beams (FRIB) http://frib.msu.edu
 - World-leading facility under construction at MSU
 - 400 kW heavy-ion SRF line; > 200 MeV/u
 - Rare isotopes via fragmentation and in-flight fissio
 Fast, stopped, and reaccelerated beams

NSF User Facilities

- National Superconducting Cyclotron Laboratory (NSCL) – <u>http://nscl.msu.edu</u>
 - In-flight rare isotope beam production
 - Fast, stopped, and reaccelerated beams

LOW ENERGY NUCLEAR PHYSICS FACILITIES

Other DOE facilities (local use)

- LBNL 88-Inch Cyclotron <u>http://cyclotron.lbl.gov</u>
 - Basic and applied research with stable beams

Texas A&M Cyclotron Institute – <u>http://cyclotron.tamu.edu</u>

- Nuclear physics research with stable and radioactive re-accelerated beams
- Triangle-Universities Nuclear Laboratory (TUNL) – <u>http://www.tunl.duke.edu</u>
 - High Intensity Gamma Source (HIGS)
 - Laboratory for Experimental Nuclear Astrophysics
 - Tandem Van de Graaff accelerator

ARGONNE TANDEM LINEAR ACCELERATOR SYSTEM – ATLAS

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

ATLAS/CARIBU FACILITY

- Stable beams at high intensity, ~10pµA, and energy from ~0.5 to 10-20 MeV/u
- CARIBU (CAlifornium Rare Isotope Breeder Upgrade) beams

 heavy n-rich from Cf fission, no chemical limitations, low intensity, ATLAS beam

 quality, energies up to 10 MeV/u
- In-flight radioactive beams with **RAISOR**
 - light beams (A<50), no chemical limitations, close to stability, acceptable beam properties
- State-of-the-art instrumentation for Coulomb barrier and low-energy experiments
- Operating 5500-6500 hrs/yr (+ 2000 hrs/yr CARIBU low energy)

ATLAS FACILITY LAYOUT

ATLAS EXPERIMENTAL EQUIPMENT

ECR2

ECR3

CARIBU BEAMS FOR ATLAS

Unique beams available

- "Thin" ²⁵²Cf source
- About 20% of fission branch extracted as ions Ba
- Works for all species no chemical limitations

Kr[

Ge Zn

REACCELERATED CARIBU BEAMS

ATLAS IN-FLIGHT RADIOACTIVE BEAMS

Argonne In-flight Radioactive Ion Separator (RAISOR)

- Magnetic chicane couple with an RF sweeper
- 1-2 nucleon transfer reactions
- In-flight RIBs used to study
 - Single particle structure
 - Pairing in nuclei
 - Nuclear astrophysics

ATLAS IN-FLIGHT RADIOACTIVE BEAMS

- RAISOR enables higher production intensities which will expand access to the chart of the nuclides
- Improvements
 - Selectivity
 - Purity
 - Target accessibility

- In-flight beams previously produced at ATLAS
- Estimated secondary beams with >10³ pps with RAISOR

N=126 FACTORY

- Access to nuclides in the last r-process abundance peak, the N=126 peak
- High intensity heavy ions at 8-10 MeV/u
- Multi-nucleon transfer (MNT) reactions
- ¹³⁶Xe + ¹⁹⁸Pt at 10 MeV/u for N=126
- Similar ion manipulation as CARIBU low energy
 - Gas catcher RFQ ion guide
 - separation MRTOF trap

ATLAS MULTI-USER UPGRADE Responding to user needs

Spectroscopy of the heaviest isotopes

- Recoil and gamma efficiencies are now optimized, beam intensity limited by rate in Ge detectors . . . The main knob left is running longer
- Production of new neutron-rich isotopes of the heaviest elements

- Small cross-section and long running time

- Detailed single-particle spectroscopy in the medium mass region
 - Low production rates and intensities

N = 20

28

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

ATLAS MULTI-USER UPGRADE

- EBIS beams represents 1-3% duty factor
- Combine pulsed EBIS beam with stable ECR beam
 - Address high demand on facility
 - Enable long duration experiments
 - Maximize efficient accelerator usage

FACILITY FOR RARE ISOTOPE BEAMS – FRIB

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

FRIB – FACILITY FOR RARE ISOTOPE BEAMS

World-leading Next-generation Rare Isotope Beam Facility

- Rare isotope production via in-flight technique with primary beams up to 400 kW, 200 MeV/u uranium
- Fast, stopped and reaccelerated beam capability
- Upgrade options
 - 400 MeV/u for uranium
 - ISOL production multi-user capability

FRIB project start 6/2009 Civil construction started 3/2014 Technical construction started 10/2014 Managed to early completion FY 2021 CD-4 (project completion) 6/2022 **Total project cost \$730 million**

NSCL enables pre-FRIB science

Argonne

FRIB BEAMS WILL ENABLE NEW DISCOVERIES

FRIB – FOUR SCIENCE THEMES

Properties of nuclei

- Develop a predictive model of nuclei and their interactions
- Many-body quantum problem: intellectual overlap to mesoscopic science, quantum dots, atomic clusters, etc.

Astrophysical processes

- Origin of the elements in the cosmos
- Explosive environments: novae, supernovae, X-ray bursts …
- Properties of neutron stars

Tests of fundamental symmetries

 Effects of symmetry violations are amplified in certain nuclei

Societal applications and benefits

Bio-medicine, energy, material sciences, national security

FRIB – INSTALLATION ADVANCED, FIRST BEAMS ACCELERATED

FRIB ACCELERATOR SYSTEMS SUPERCONDUCTING RF DRIVER LINAC

- Accelerate ion species up to ²³⁸U with energies of no less than 200 MeV/u
- Provide beam power up to 400 kW
- Energy upgrade to 400 MeV/u for uranium by filling vacant slots with 12 SRF cryomodules
- MSU has funded β=0.65 cavity prototype development

B=0.085 Matching B=0.29 Matching

β=0.085 Matching

Cryomodule

Li-Stripper

Module

Crvomodule

Crvomodule

β=0.29 Matching

Crvomodule

12 β=0.29 Cryomodules

Room-Temperature

Folding Segment

Beam Delivery System To Target

P

LINEAR ACCELERATOR IN FRIB TUNNEL

- First section of superconducting linac commissioned
 - ⁴⁰Ar⁹⁺ beam accelerated to >20 MeV/u
- >80% of cryomodules installed
- Helium refrigeration system commissioned at 2K

FRIB PRODUCTION FACILITIES FRAGMENT SEPARATOR

- Three stage magnetic fragment separator
 - High acceptance, high resolution to maximize science
 - Provisions for isotope harvesting incorporated in the design
- Challenges
 - High power densities
 - High radiation

Multi-slice rotating graphite

target

FRIB PRODUCTION FACILITIES **FRAGMENT SEPARATOR**

- High-power target module for rare isotope production assembly complete - Multi-slice rotating graphite disks
- High-power beam dump module fabricated
 - Water filled rotating drum to absorb up to 300 kW primary beam
- Radiation resistant superconducting quadrupole magnets
 - Installation of magnets in fragment separator front-end underway

LEVERAGING FRIB CAPABILITIES

Isotope Harvesting for Broad Benefit

- Many rare isotopes are produced but only one isotope delivered to single user – Often 1000 other isotopes are
 - produced that could be harvested and used for experiments or applications
- FRIB has provisions for isotope
 - harvesting incorporated in the design
 NCU water-cooling and off-gas system prepared for harvesting upgrade
- **Primary User** Specific isotope with high purity Primary beam dump Mass Slit Isotope Harvesting · A few specific isotopes · Potentially easier separation Production target Fragment Catcher Isotope Harvesting Constrained range of isotopes · Easier chemical separation 100 kW Beam Dump Isotope Harvesting primary beam Wide range of isotopes
 - Challenging chemical separation

MEETING ISOTOPE NEEDS AND CAPTURING OPPORTUNITIES

FOR THE FUTURE: 2015 LONG RANGE PLAN FOR

- 2015 Long Range Plan for the NP-DOE Isotope Program recognizes FRIB importance and recommends investment in infrastructure for isotope harvesting at FRIB
- Whitepaper on Isotope Harvesting:
 - Isotope Harvesting at FRIB: Additional opportunities for scientific discovery, E. Paige Abel et al 2019 J. Phys. G: Nucl. Part. Phys. in press https://doi.org/10.1088/1361-6471/ab26cc

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

INSTRUMENTATION

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

ADVANCED INSTRUMENTATION FOR LOW ENERGY NUCLEAR PHYSICS

- State-of-the art instrumentation is required to maximize science opportunities with rare isotope beams
 - Detectors
 - High efficiency, high resolution
 - Spectrometers
 - Large acceptance, high rigidity
 - Ion and atom traps, laser facilities
 - High-precision experiments
 - Control systems and data acquisitions
- Unique challenges in cutting-edge facilities
 - High beam rates / very low beam rates
 - Radiation hard equipment
 - Complex measurements with multiple systems

INSTRUMENTATION FOR LOW ENERGY NUCLEAR PHYSICS: GRETINA AND GRETA

36

- GRETINA highly segmented Ge detectors to track and reconstruct gamma-rays is the first phase of the larger . . .
- GRETA (Gamma Ray Energy Tracking Array) will be the most advanced gamma-ray detector array for nuclear science
 - Will cover ~ 80% of the full solid angle, and be key in the physics programs at ATLAS and FRIB with fast and reaccelerated beams
 - GRETA will benefit from High Rigidity Spectrometer (HRS) at FRIB
 - Design study funded by DOE-NP underway
 - HRS building addition underway at MS

http://greta.lbl.gov

LOW ENERGY NP USER FACILITIES AND THE **SBIR/STTR PROGRAM**

- SBIR/STTR program is important for the DOE Low Energy NP facilities
 - Development of new techniques, instrumentation and supporting systems are suitable SBIR/STTR projects
 - New, higher power facilities are being built worldwide and existing facilities are being upgraded
- Examples of possible areas for SBIR/STTR activities are
 - High-rate, position sensitive particle tracking detectors and timing detectors for high-energy heavy-ions
 - Fast data acquisition electronics
 - Target technology (high-power targets, thin targets, windows, strippers, ...)
 - Ion source technology
 - Beam catcher/release systems
 - Radiation hard precision magnetic field probes
 - Radiation hard actuator systems
 - Real time data visualization framework
 - Other accelerator related developments

SUMMARY

- The US low energy nuclear physics community is strong with exciting opportunities on the horizon
- DOE NP facilities are pushing the limits of technology to enable this science
 - Existing low-energy rare isotope beam facilities in the US provide forefront research opportunities today
 - FRIB will be a world-leading rare isotope facility that will enable new discoveries
- DOE NP SBIR/STTR program plays an important role in making the low energy nuclear physics program successful and will be critical moving in the FRIB era

THANK YOU

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

