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— additional expertise:
control systems
machine learning
radiation & shielding design

Materials science

Finite-element design
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RadiaSoft projects & machine learning initiative

/A

Office of Nuclear Physics (DOE/NP)

— High-energy magnetized e- cooling, Ph 2a, David Bruhwiler
— Spin tracking with the Zgoubi code, Ph 2, Dan Abell
— Toolkit for control system algorithmes, Ph 1, Jon Edelen

Office of High Energy Physics (DOE/HEP)

— MHD modeling of 3D plasma sources, Ph 2, Nathan Cook
— Machine learning for RCS controls, Ph 1, Jon Edelen

Office of Basic Energy Sciences (DOE/BES)

— Parallel 3D magnet design w/ Radia, Ph 2, Dan Abell
— High-efficiency FEL collab./exp. (ANL),  Ph 2, Stephen Webb
— Integrated vacuum chamber modeling, Ph 2, 7higang Wu - “Michael”

Advanced Scientific Computing Research (DOE/ASCR)

— Modeling vacuum nanoelectronic devices, Ph 2, Nathan Cook

Office of Nuclear Energy (DOE/NE)

— Radiation hard plasma-based vibration sensor, Ph 1, Johan Carlsson

National Institutes of Health (NIH/NCI)

— X-ray freatment plans for prostate cancer, Ph 1, Jon Edelen
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DOE/NP Motivation & Ph 2a Technical Objectives
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C. Montag, “eRHIC Accelerator Design Overview,” S. Abeyrante et al., “MEIC Design Summary,”

« Integrate JSPEC cooling code into Sirepo platform

 Develop and test a new conceptual design for both an
accumulator ring and high current d.c. cooler

* |Incorporate new methods of dynamic friction calculation into a
software package
— risk reduction for high-energy magnetized e- cooling
— target software package is JSPEC
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The Ph 2i1s completed - Ph 2a work has begun

1. Develop a browser-based GUI for electron cooling code

— the GUI has been developed: https://sirepo.com

Frank Schmidt: “We were concerned about an IBS calculation and Markus Steck suggested
we try Sirepo, which immediately gave us the correct rate.”

2. Preconceptual design of a cooling and accumulator ring
— completed by P. Mcintyre and J. Gerity at Texas A&M on subcontract

Yuhong Zhang: “JLEIC implements this idea with a full size high energy booster”

3. Preconceptual design of a magnetized electron cooling system
— Impactionization physics for the Warp code has been implemented

— available to the community, via https://github.com/radiasoft/rswarp

4. Study equilibrium electron cooling rates
— thisinvolved much analysis of BETACOOL code & benchmarking with JSPEC

5. Generalize dynamic friction calculations to include space charge
and field errors

6. Develop software to perform dynamic friction calculations for
electron distributions

— includes implementation of our own algorithms, mostly in Python

— confributions to JSPEC, https://qithub.com/zhanghe®704/electroncooling
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https://sirepo.com/
https://github.com/radiasoft/rswarp
https://github.com/zhanghe9704/electroncooling

Task 5 — Generalize dynamic friction calculations to include space
charge and field errors

« EIC requires cooling at high energy
— 100 GeV/n 2 y= 107 255 MeV bunched electrons, ~1 nC

« Electron cooling at y~100 requires different thinking

— friction force scales like 1/ (Lorentz contraction, time dilation)
« challenging to achieve the required dynamical friction force

« not all of the processes that reduce the friction force have been
quantified in this regime - significant fechnical risk

— normalized interaction time is reduced to order unity
* 1=1fw,, >> 1 for nonrelativistic coolers

* 1=fo, ~ 1 (in the beam frame), for y~100
— violates the assumptions of infroductory beam & plasma textbooks
— breaks the intuition developed for non-relativistic coolers
— as aresult, the problem requires careful analysis
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Previous work — asymptotic model for cold elec’s
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Ya. S. Derbenev and A.N. Skrinsky, “The Effect of an Accompanying Magnetic Field on
Electron Cooling,” Part. Accel. 8 (1978), 235.

Ya. S. Derbenev and A.N. Skrinskii, “Magnetization effects in electron cooling,”
Fiz. Plazmy 4 (1978), p. 492; Sov. J. Plasma Phys. 4 (1978), 273.

I. Meshkov, “Electron Cooling; Status and Perspectives,” Phys. Part. Nucl. 25 (1994), 631.
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Previous work: parametric model for warm elec’s

Ze? /4 V.2
F — _4zzneme (recz )2 In [pmax + pmin + r-L ] Vion 7 pmln ( € / 7[80)/m ion
pmin + rL (V2 -I—V2 ) Prax :Vion/max(a)pe’]v/z-)

ion

rL - Vrms,e,L /QL (BII)

V.V. Parkhomchuk, “New insights in the theory of electron V2 =V2 +AV2

cooling,” Nucl. Instr. Meth. in Phys. Res. A 441 (2000).
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f Figure 3. Longitudinal component of the force (eVm™') versus velocity
2500 (x10° ms~!) for zero transverse angle 6 = 0 with respect to the magnetic field
[ lines. VORPAL results, dots with error bars; empirical fit from [18], solid line.
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New approach to calculating magnetized friction

Semi-analytic calculation

— Hamiltonian perturbation theory
- gyrokinetic averaging
* reduces dimensionality
* reduces range of time scales

— fast numerical simulations
« complicated hierarchy of
‘passing’ and ‘trapped’ orbits
« cannot be captured analytically
Approximations

— longitudinally cold electrons

« warm e- results obtained via
convolution with Gaussian

— longitudinal ion motion
— Idealized solenoidal B-field
— no other external forces

/A

F(eV/m)

Approximations will be relaxed
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— Reduced model (cold electrons, local fit)

— Reduced model (A, =10" m/s)
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Dimensional analysis yields 2-parameter model
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3-parameter model fits the calculations closely

* The physical system depends on 3 parameters:

— Ny Z, T;'nt
* 3-parameter model works well
— 3" parameter is small
] 5000 ‘ ‘ ‘ ‘
- OPthal ® e computed
. - - tweaked A and o
;?arqmetrlc form e o sparam it |
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consideration
] ) fg 3000f | \
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Differences w/ Derbenev-Skrinsky & Parkhnomchuk

~ 2 10000
« all ~1/v? forlarge v — reduced model (o1 =0
— our semi-analyfic —-- Reduced model (A¢; = 105m/s)
model agrees exactly 8000 — Parkhomchuk (A} =0)

~== Parkhomchuk (8¢ =10°m/s)
Derbenev-Skrinsky (Vj, =0)

with D&S
— Parkhomchuk is foo
large in this limit
« Our semi-analytic
model is consistently
lower than
Parkhomchuk 2000 -

— may not always be so

« Parkhomchuk has 0 .
unphysical inflection Vien, 1 (105m/s)
as v=>0 |

_ can be corrected via Param’s taken from Fedotov, Bruhwiler ef al.:
constant Coulomb log — Au™”?; =107, n,=10"° m>; B=5T

— no Coulomblog forour = gy = 4x107%s ~56 T}, ~0.16 T,
model — typical e sep. ~4.9x10°m ~10vr,,
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Future plans

« Theory and analysis
— correct treatment of perpendicular friction is in Process

— including the effect of space charge forces & B-field errors
« Parkhomchuk handles this parametrically with v
» Derbenev & Skrinsky approach cannot include these effects

« Software development

— parallelize our Python code
* benchmark brute force simulations with semi-analyfic model
« more data for parametric models

. quantify effects of weaker B-fields < % Sirepo
— Implement models in JSPEC P e
ccelerator Design,
« compare with BETACOOL X-ray Optics,
] . and Machine Learning
« Supporting EIC design work

BRING YOUR LAPTOP

— use JSPEC to study EIC designs

/A radiasoft
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