Quantum Testbed Stakeholder Workshop

Hosted by the Advanced Scientific Computing Research Program

Pacific Northwest National Laboratory Quantum Computing Capabilities and Interests

February 14 – 16, 2016

Proudly Operated by Ballelle Since 1965

PNNL capabilities & interests summary slide

- Primary expertise & interest areas
 - Computing testbeds (e.g., CENATE)
 - Computing technology performance modeling & simulation
 - Topological quantum computing algorithms (codesign)
 - Computational chemistry (co-design)

- Most differentiating factor(s)
 - Topological quantum computing expertise
 - Testbeds for performance modeling & simulation
- Main contribution/role
 - Topological quantum computing algorithm design
 - Center for testbed evaluation, performance modeling & simulation

Quantum computer science capabilities

- Mathematics
 - Topological quantum computing algorithms
 - Combinatorics approaches to error-correcting codes
 - Lattice modeling of topological (quantum) phases
- Computer science
 - Testbed expertise
 - Performance modeling & simulation
 - Runtime library development
- Quantum materials simulation and modeling

Fabrication & characterization capabilities

Advanced processing of sensitive features on qubit architectures

Engineered solvent-assisted supercritical CO₂-based wafer processing

Insight into the chemistry and characterization of nanoscale diamond applicable to development of qubits

Helium focused ion beam patterning to produce nitrogen-vacancy defect centers in diamond films

Capabilities in engineering & supporting technology

- RF (microwave) engineering for security applications
- Significant data warehousing and analysis capabilities
- Emerging cryogenic capability for physics detection applications

Applications to domain science

- Computational chemistry
 - Quantum co-processing
 - NWChem: Flagship computational chemistry code
 - NWChemEx: computational chemistry at exascale
 - NWChemQ: realizing Feynman's vision?
- Condensed matter and particle physics
 - Quantum simulation of topological phases
- Applied mathematics
 - Quantum acceleration of combinatorics algorithms

LDRD investments in quantum computing technology

- Motivation
 - Scalable synthesis for atomically precise structures
 - Control of material defects, disorder, and noise
 - Understanding and reducing changes in structure and function over process cycles
- Expertise
 - Quantum materials FIB and characterization
 - Quantum device cleaning
 - New candidate topological phases of matter
 - New topological quantum computing capabilities

Facility management experience

Center of Advanced Technology Evaluation (CENATE)

External partnerships

- Partnerships
 - Topological phases Microsoft Station Q, LSU, Texas A&M, UCSB
 - Device modelling SNL and LLNL
 - Defect measurement and analysis UMD
- Significant experience working with industry, including IP protection and technology transition
- New partnerships desired
 - Computational chemistry quantum co-processing
 - Hardware testbed for surface code schemes
 - Device modelling for testbed hardware analysis
 - Combinatorial problems in quantum computing

Extra Slide CENATE: Potential to Leverage

- Testbeds targeted at several areas
 - System Technologies with future high impact to HPC
 - Novel Processing Paradigms beyond traditional computing
 - Emerging Technologies beyond Moore's Law

- Evaluation of workloads of interest
 - Scientific Computing
 - Irregular Applications
 - DOE-focused
- Integrated measurement and ModSim

