Lawrence Berkeley National Laboratory Quantum Computing Capabilities & Interests

Irfan Siddiqi, *Materials Science Division (MSD)* Jonathan Carter, *Computational Research Division (CRD)*

Quantum Testbed Stakeholder Workshop Hosted by the Advanced Scientific Computing Research Program February 14 – 16, 2016

LBNL Capabilities and Interests Summary

Advanced & Impactful Computing

- National Energy Research Scientific Computing (NERSC) Facility
- Quantum Computation
- Post-Moore Digital
- Special-purpose computing (e.g. Neuromorphic)

Creative Interdisciplinary Partnerships

- Cross-division & UC Berkeley
- CAMERA: Math & Light Source Data
- AQUES (Adv. Quantum Enabled Simulation): Computer Science, Engineering, Molecular Foundry, Chemical Sciences, & Materials Science

Core Capabilities in Quantum Computation

- Existing quantum computing hardware based on trapped ions, cold atoms, & superconducting circuits with well defined pathways for expansion
- Expertise in applied quantum algorithms, verification & validation, coherent measurement, feedback & control, multi-layer modular software stacks, & high-level user interfaces
- Fabrication of nanoscale integrated circuits
- Complex digital, low frequency, microwave, & optical engineering resources
- Management expertise in successful multi-user computational & experimental facilities

Quantum Computing Hardware : Summary

Hartmut Häffner Materials Science Division Trapped lons

Dan Stamper-Kurn Materials Science Division Ultracold Atoms

Materials Science Division

Superconducting Circuits

Irfan Siddiqi

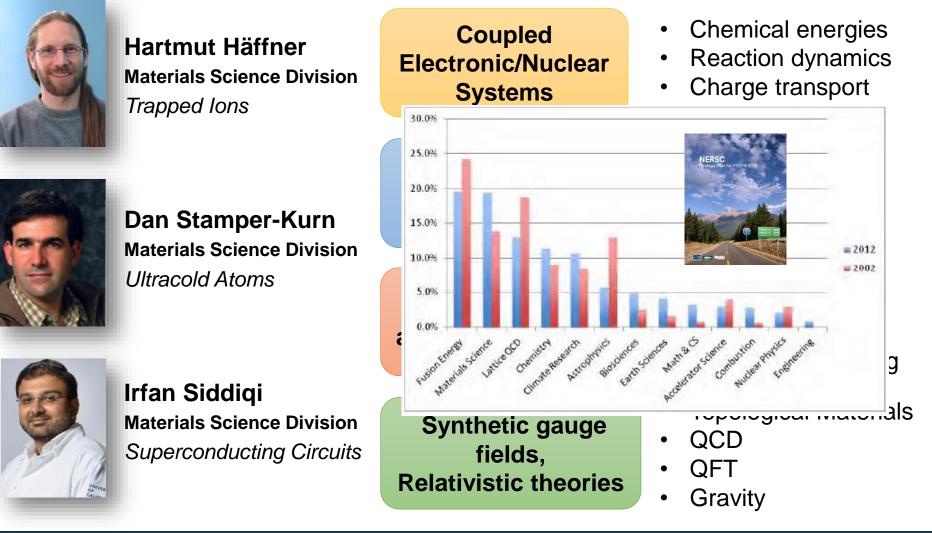
Coupled Electronic/Nuclear Systems

Quantum Ising, Bose-Hubbard, Spin-Boson

Fermi Hubbard at fractional doping

- Chemical energies
- Reaction dynamics
- Charge transport
- Ising-like magnets
- Superfluidity
- Electron-phonon interactions
- Photosynthesis
- Superconductivity
- Spin liquids
- Solar water splitting
- Topological Materials
- QCD
- QFT
- Gravity

Office of Science



Quantum Computing Hardware : Summary

CITICS OF Office of Science

Freedom to innovato

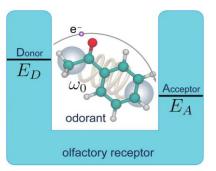
Quantum Computing Hardware : Trapped Ions

- Identical ions (1-100)
- Individual control
- Long-range interaction
- Long coherence times
- Highly coordinated graphs
- Full characterization

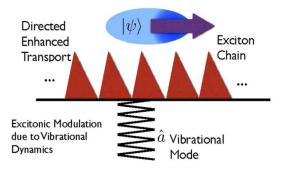
 t_i

 $H = \hbar \sum \Delta_{\text{ion}} \sigma_i^z + \hbar \sum \omega_{\text{r},i} a_i^{\dagger} a_i + \sum t_{ij} \left(a_i^{\dagger} a_j + a_i a_j^{\dagger} \right)$ $+\sum \lambda_i \sigma_i^x (a_i + a_i^{\dagger}) + \sum \mu_i \sigma_i^y.$




Quantum Computing Hardware : Trapped Ions

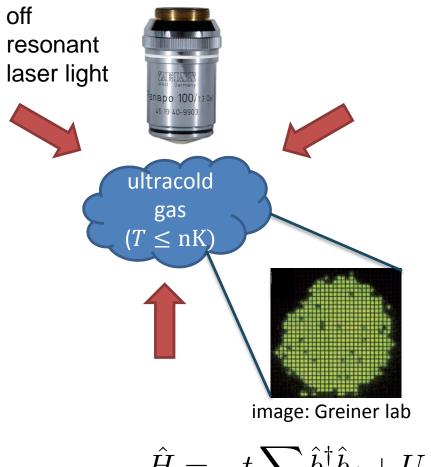
- Energy and Entanglement Dynamics
- Impurities in Crystals
- Dissipation and Thermalization
- Quantum Phase
 Transitions



Olfaction

Sarovar et al., Nature Physics **6** 462 (2010) Solov'yov et al., PCCP **14** 13861 (2012) Irish et al., PRA **90**, 012510 (2014)

Directed energy transport


Problems scale exponentially in the number of sites, difficult to solve for ~ 5-10 sites.

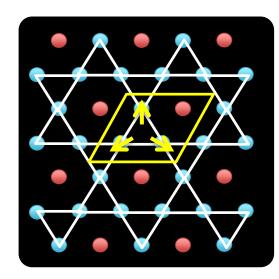
Myers et al., NJP 17 093030 (2015)

Office of Science

Quantum Computing Hardware : Ultracold Atoms

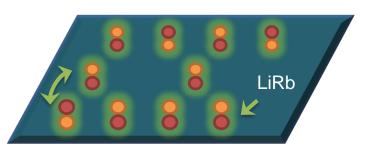
- Identical atoms (10² 10⁶)
- Long coherence times, highly entangled cluster states
- Single site imaging
- State-dependent readout
- Multi-species experiments; long/short range interaction
- Versatile lattice geometry

$$\hat{H} = -t \sum_{i,j} \hat{b}_i^{\dagger} \hat{b}_j + U \sum_i (\hat{n}_i - 1) \hat{n}_i + \mu \sum_i \hat{n}_i$$



Quantum Computing Hardware : Ultracold Atoms

- Low Energy Phases of Frustrated Systems
- Emergent Excitations
- Non-equilibrium Dynamics
 - energy
 - entropy
 - entanglement

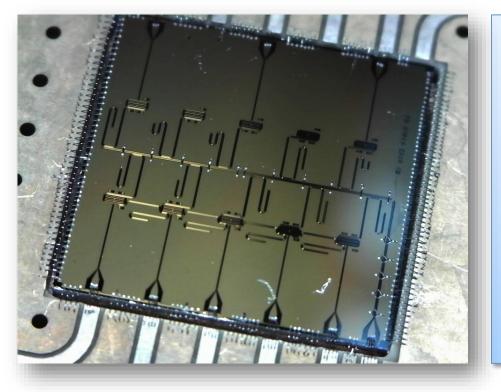

- strong direct interactions: nearest
 neighbor exchange ~ 20 kHz
- reconfigurable: photoassociate into molecules at selected sites
- localized non-destructive measurement: photodissociate at selected site and measure atoms

"Very frustrated" quantum magnetism

 What is the antiferromagnetic ground state? A quantum spin liquid of some type? (Z2, Dirac...)

Orbital frustration = flat bands

- Fate of Bose condensation, superconductivity, itinerant ferromagnetism?
- Does flat band strengthen localization into Mott insulator?



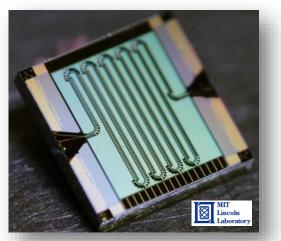
Office of

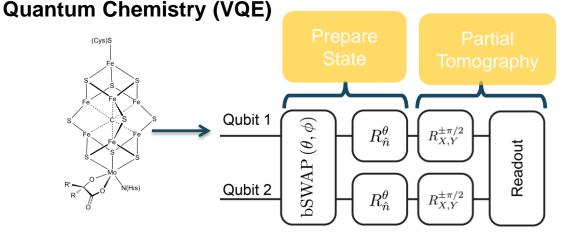
Science

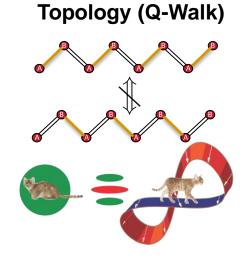
Quantum Computing Hardware : SC Circuits

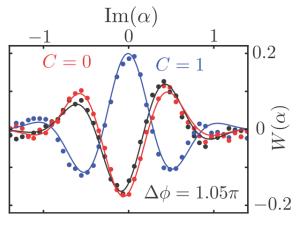
- Fully engineered quantum system (10-100,...)
- In-situ tuning
- Fast operating time
- Single qubit addressability, readout, and control
- QND, pulsed & continuous measurement
- Variable connectivity

$$\hat{H} = \sum_{i} \epsilon_i \hat{\sigma}_i^z + \chi_i \hat{\sigma}_i^z \hat{a}_i^\dagger \hat{a}_i + J(t) \hat{\sigma}_i^x \hat{\sigma}_{i+1}^x$$

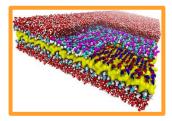




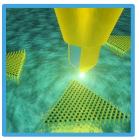

Quantum Computing Hardware : SC Circuits


- Quantum Chemistry: Statics & Dynamics
- Quantum Ising Bose-Hubbard Fermi-Hubbard
- Topological Materials

Quantum Limited Detection



Topological invariant

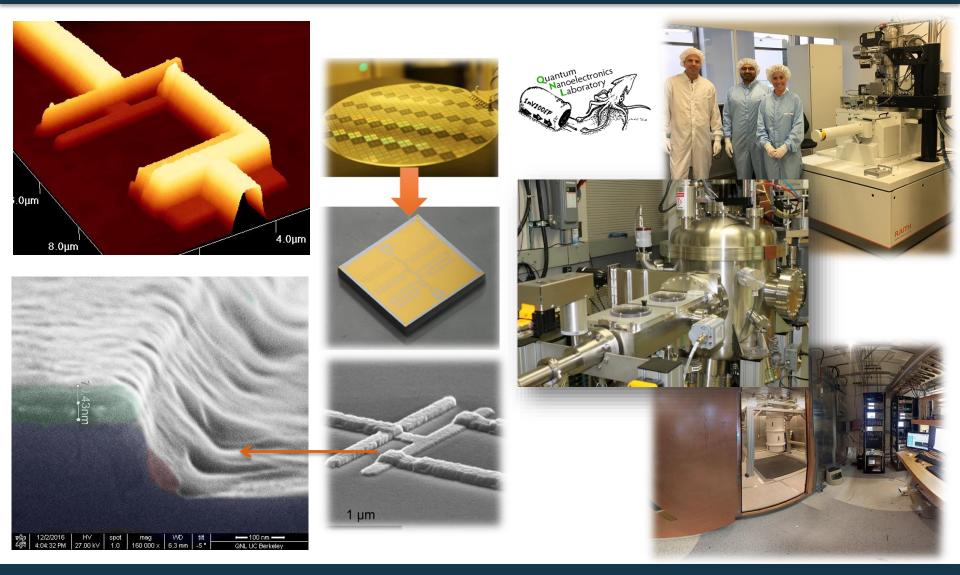

Fabrication and Characterization Capabilities

Combinatorial Nanoscience

Functional Nanointerfaces

100 n

Single-Digit Nanofabrication and Assembly


Stefano Cabrini

Fabrication and Characterization Capabilities

Engineering and Supporting Technology

EPICS Timina

GigE

Wim Leemans (8-10 FTE)

Director, Accelerator Technology and Applied Physics Division

Berkeley Lab is the lead for development of the RF controls, conceptual design, and prototype development. GOAL: RF controller that maintains 10⁻⁴ amplitude and 0.01 deg phase coherence between hundreds of SC cavities.

John Byrd Head, Center for Beam Physics Accelerator Technology and Applied Physics Division

GB Fiber/Cavity Signals MPS **RF** Station Beam Feedback Feedback Algorithms Exception Handling Precision Receiver Resonance Control Cavity Signals Piezo & Stepper 3.8 kW Phase Reference Line Solid State Amplifier Gallery Tunnel Forward & Reverse Power Cavity Signals

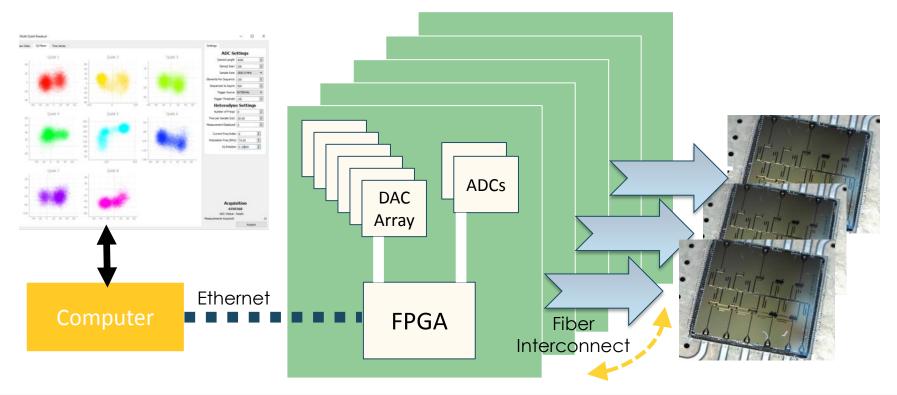
Larry Doolittle Engineering Division

Office of

Science

1.3 GHz Superconducting Cavities

LCLS-II RF system schematic layout (SLAC)


Engineering and Supporting Technology

- Single FPGA board controls and measures 6-8 qubits
- Boards connected via fast fiber interconnect
- Local DSP for waveform generation and analysis
- Low latency for feedback across the entire network

Office of

Science

Scalable to arbitrary number of boards

Quantum Computer Science and Computational Science Capabilities

Anastasiia Butko Computer Architecture

Jonathan Carter Algorithms

Bert de Jong Algorithms & Control

Jarrod McClean Algorithms

Joel Moore Cond. Mat., QVV

Umesh Vazirani QVV

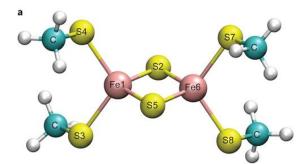
Office of

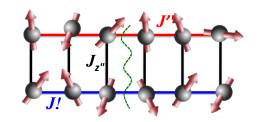
Science

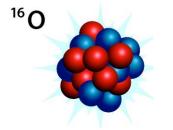
Birgitta Whaley Chemistry, QVV



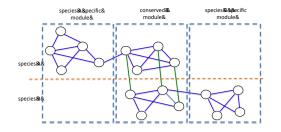
Norman Yao Cond. Mat., Algorithms


Computer & Computational Science Ecosystem






Applications to Domain Science @ Berkeley Lab



Catalysts - Coupled electronnuclear motion; beyond single reference methods: de Jong, McClean, Whaley, Strongly correlated materials: Moore, Yao, Whaley Nuclear structure: Haxton

Quantum Associative Memory for HEP particle tracking: Calafiura, Shapoval

Orthology – complex optimization problem in biosciences: Brown, Bouchard

Investments in Quantum Computing Technology

- As part of LDRD initiative in post-Moore computing

Project	PI
Solving Problems in Materials Theory via Quantum Networks	Moore,Joel
Quantum Computing Technology Exploration	Siddiqi, Irfan
Design of Quantum Chemistry Simulations for Superconducting Circuits	McClean,Jarrod
Quantum Chemistry Simulations for Superconducting Circuits	Siddiqi, Irfan
Quantum simulations of magnetism and transport with atomic systems	Stamper-Kurn,Dan
Simulating Excited State Energies and Dynamics with Superconducting Qubits	Siddiqi, Irfan
Nanoscale magnetometry, electrometry, and thermometry of exotic quantum materials using Nitrogen-Vacancy Defects	Yao, Norman

 Productive multi-disciplinary team consisting of Computing Sciences, Materials Science, Chemical Science, Molecular Foundry and campus

Facility Management Experience

NERSC

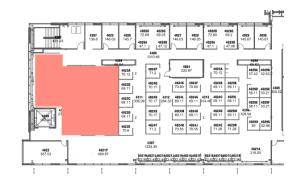
ESnet

ALS Molecular Foundry & NCEM JGI

- Hosts 2 ASCR, 2 BES, and 1 BER user facilities
- Nearly 10,000 users (remote and onsite)

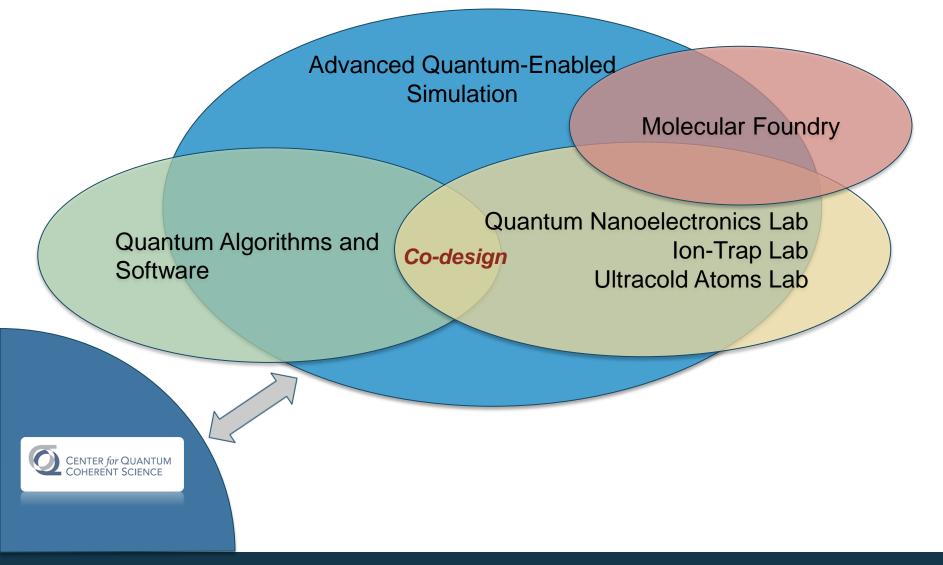
Office of Science

- JGI, ALS, NERSC, and ESnet staff work exclusively on program activities;
 Molecular Foundry staff work 50% with users
- User group meetings, User information systems, Onboarding office, Guest house



AQuES – Housed with Computing Sciences

- Office & lab space available in Wang Hall
- Internal funding to develop lab space & hardware



AQuES Partnerships

DEPARTMENT

External Partnerships

- Google (FermiLib)
- NASA Ames
- LLNL
- Sandia (GST)
- UC Riverside, U. Rochester, Chapman U. (continuous error correction)
- U. Sherbrooke, McGill U. (non-classical light and matter)

Cyclotron Road Science Incubator

 6 teams generated over \$15M in public/private partnership funding from \$3M initial EERE AMO funding

Innovation and Partnership Office

- Patents issued: 80 (65 U.S., 15 foreign)
- Patent applications filed to protect LBNL intellectual property: 167
- New technologies disclosed by LBNL researchers: 193
- Royalties: \$ 2,995,865
- Companies / investors / entrepreneurs visiting with IPO staff: 111
- New licenses and options for LBNL technology: 11
- Software licenses: 149 (commercial, collaboration, and government use)
- 46 CRADAs
- NDAs Inbound 95 and Mutual (in/out) 157

Thank You

1

1111

Office of Science

- 23 -