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Relativistic electron driven magnetic reconnection 

Louise Willingale1, Karl Krushelnick1, Alexander Thomas1, William Fox2 

1 University of Michigan, 2Princeton Plasma Physics Laboratory 

Magnetic reconnection [1] is the fundamental phenomena where magnetic fields rearrange into a lower 
energy state and releases energy. This occurs during many high-energy-density processes such as solar 
flares [2], coronal mass ejections, during the interaction of the solar wind and the Earth’s magnetosphere 
[3], fusion plasma instabilities [4] and during some explosive astrophysical events [5]. In previous work, 
we showed the first experimental evidence of laser-driven magnetic reconnection [6–8] and this work has 
lead to many other groups studying laser-driven magnetic reconnection [9–16]. Two high-energy, 
nanosecond duration laser pulses are used to heat a solid target and produce two expanding plasma 
plumes where azimuthal magnetic fields are self-generated due to the perpendicular temperature and 
density gradients. Between the two plasma plumes, opposing magnetic fields are driven together, either 
by the plasma flow or the Nernst effect, depending on the intensity of the laser interaction. This provides a 
controlled way to study magnetic reconnection in the laboratory to understand processes that can usually 
only be studied indirectly from astrophysical objects. Using laser pulses with nanosecond duration and 
moderate laser intensities (I ~ 1014– 1015 Wcm-2), produces plasma conditions that may be comparable 
with solar conditions. 

For relativistic objects such as hard x-ray and higher energy spectrum bursts in solar flares [17], pulsars 
[18], γ-ray bursts [19–21] and active galactic nuclei [22, 23], relativistic magnetic reconnection likely 
plays an important role. Some of these are objects that we will only ever be able to make indirect 
observations of to determine the physical processes taking place. Therefore, it would be of interest to 
perform a laboratory study of magnetic reconnection driven by the relativistic electron currents formed 
during a ultra-high intensity (1019 Wcm-2) laser plasma interaction. Developing an experimental platform 
to study collisionless magnetic reconnection using the relativistic electron currents produced during high-
intensity laser interactions with solid targets would provide valuable data on the reconnection physics, 
such as timescales and plasma jet energy, to compare with existing theories. A relativistic intensity laser 
pulse strongly heats electrons from a solid target to MeV energies. These electrons are largely confined to 
the target surface by space-charge fields and therefore rapidly (~ c) expand along the target surface. 
Associated with this huge surface electron current is a large azimuthal magnetic field [24]. Therefore 
having two laser pulses focused in close proximity onto the target, will produce a magnetic reconnection 
geometry driven by relativistic electron currents in a collisionless regime as shown in figure 1. 

This research would impact fundamental plasma science and magnetic reconnection research as well as 
related astrophysics and space science fields. Better understanding of magnetic reconnection processes 
could lead to improved understanding of solar flares, a phenomena that can debilitate the now extensive 
satellite network and even black-out power networks. Facilities exist for this type of experiment, such as 
Hercules or Tcubed (University of Michigan), Titan (LLNL), and Omega EP (LLE), but further 
development of ultrafast diagnostics would enable improved measurements. Numerical modeling of these 
interactions using state-of-the-art codes, such as OSIRIS or EPOCH, to study the physics of the processes 
requires access to large-scale computing facilities as it is challenging to model the dense plasma over 
relatively long timescales. 
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Figures 
 
Figure 1: The basic laser driven magnetic reconnection geometry show (a) face-on and (b) side-on. 
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