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•   Describe the research frontier and importance of the scientific challenge. 
Novel kinetic waves have recently been predicted by theory and observed experimentally on plasma with 
slightly non-Maxwellian particle velocity distributions. An entire new class of waves has recently been 
identified in plasmas with velocity distributions flattened at vphase, allowing waves with a given wave 
number to propagate at a range of frequencies. Experiments suggest that velocity distributions 
spontaneously evolve to make the plasma resonant with a range of driver frequencies. Understanding the 
plasma response to drive frequencies is of broad interest. 

•   Describe the approach to advancing the frontier and indicate if new research tools or capabilities 
are required.  

Iterated comparisons of theory and simulation with well controlled experiment is required.  
The particles velocity distribution can be tailored with lasers or with antenna. Experiments have indicated 
that an initially off resonance driver can modify the distribution until the driver becomes resonant with a 
new wave. Further techniques to control the distribution function will be developed. 
 
• Describe the impact of this research on plasma science and related disciplines and any potential for 

societal benefit. 
Understanding these new waves may be the key to tame stubborn plasma instabilities in plasmas exposed 
to intense drivers. 
Also this type of research is ideal to train graduate students in university research groups with strong 
theory and experiment program.  
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Plasma Waves on Non-Maxwellian Particles Velocity Distributions 
 

Following the pioneering studies of Berstein, Green and Kruskal (BGK) [1] an enormous theoretical 
literature [2] argued that nonlinear wave states can exist with wave number and frequency well off the 
usual linear dispersion curves. However, the theory suggested that these nonlinear waves require carefully 
tailored trapped distributions and it was not clear that the waves could be easily excited by drivers in real 
experiments. 

Recent experiments (and simulations) have shown that such off dispersion waves are easily excited and 
ring robustly. By off dispersion, we mean off the usual dispersion predicted for a Maxwellian velocity 
distribution. At least for simple cases, the off dispersion waves satisfy the dispersion curve for a slightly 
altered Maxwellian, that is a Maxwellian with a small flat plateau created by nonlinearly trapping at the 
wave phase velocity. The plateau is created when a resonant drive is applied over many trapping periods. 
One expects that these off dispersion waves can be excited in many plasmas with intense drivers. 

Trapped non-neutral plasmas have been useful systems to excite and study these off dispersion waves. 
New experimental techniques provide some control of the particle velocity distribution using external 
antenna and tailored rf bursts, resonant interaction with a laser beam can also modified the particle 
velocity distribution function. Wave coherent laser induced fluorescence techniques allow direct 
measurement of the particle distribution in the presence of the wave. 

 “Small flat spots” on Maxwellian distributions are created by driving the plasma with an external field at 
a given frequency and wave number. These slightly modified Maxwellian have led to the experimental 
observation of Electron Acoustic Waves. EAWs are the low frequency branch of electrostatic plasma 
(Langmuir) waves. The EAW typically has a phase velocity vph∼1.4 ̄v, quite low compared to typical 
plasma waves, and its frequency has a strong temperature dependence, fEAW∝T1/2. Linear Landau 
damping would suggest that such slow phase velocity waves are strongly damped; but at finite wave 
amplitudes, trapping of particles near the phase velocity “flattens” the distribution function, resulting in a 
weakly damped wave. These waves have been studied theoretically [3] and numerically [4]; they have 
been observed in experiments with non-neutral plasmas [5] and in laser-produced plasmas [6]. Figure 1 
(from ref.5) shows a phase-coherent measurement of f(v) for a standing wave in trapped ion plasmas. 
Note that the plateau located at the phase velocity oscillates with the wave phase from positive to negative 
velocity. 
The EAW name is also applied to substantially different waves on bi-Maxwellian distributions in space 
physics [7]. 

While studying on dispersion EAW’s, experiments discovered that waves can be excited and ring robustly 
well off the linear dispersion curve for a Maxwellian. When a relatively intense driver field with wave 
number and frequency off the linear dispersion curves is applied for many trapping periods, a plateau is 
created around the driver phase velocity and a new mode, with only slightly shifted frequency, rings after 
the driver is turned off. 

A theoretical explanation for this remarkable property is that the corners of the plateau formed by the 
drivers make a large contribution to the perturbed charge density for the wave. The sign and magnitude of 
this corner charge density is very sensitive to the wave phase velocity, so only a slight shift in phase 
velocity (or frequency, for fix wavenumber) can create a new mode, called a corner mode, at frequency 
and wave number where none existed on the Maxwellian plasma. 
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Figure 2 (from ref.8) shows part of the particle distribution with a flat spot. The dashed line shows the 
drive phase velocity and the dotted dashed line indicates the phase velocity of the excited wave. An on 
dispersion mode rings essentially at the same frequency as its driver, in contrast an off (Maxwellian) 
dispersion mode rings at a lower frequency. [8] 

“Extreme distortion” of a Maxwellian velocity distribution can routinely be created by frequency chirped 
drive. Plasma wave excited on these distributions are easily excited to large amplitude and have extremely 
low damping. Figure 3 shows the measured particle velocity in a pure ion plasma before and after a 
frequency chirped drive [9]. Also shown on figure 3 is the wave amplitude at various locations along an 
electron plasma column showing strong non-sinusoidal behavior [10].	
  
 
 

Summary 

EAW types of waves have been observed in laser fusion and on bi-Maxwellian distributions in space 
physics. In both cases diagnostics are extremely challenging. In contrast measurement on trapped non-
neutral plasma have measured the wave coherent velocity distribution function, and have found waves 
existing off Maxwellian distributions when f(v) is tailored with an external drive.  

Understanding these waves on non-Maxwellian velocity distributions may be important to tame unwanted 
plasma instability in hot plasma exposed to intense drivers. Well-diagnosed low collisionality non-neutral 
plasmas are ideally suited to investigate these new types of waves on non-Maxwellian velocity 
distributions.   

Furthermore these detailed theory-experiment comparisons offer unique training for graduate students. 
Training new Ph.D. in plasma physics is essential to replenish the aging plasma physicist population. 
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Figures 

Figure 1 Phase coherent particle velocity distribution in the presence of an EAW [5]. 

 
Figure 2 Off-Maxwellian dispersion modes have a phase velocity different than the one setup by the drive 
[8]. 

 
Figure 3 Example of extreme modifications of the velocity particles distribution in ion plasma [9], and 
large amplitude cnoidal plasma waves measured in electron plasma [10] 

Here also the measurement is done at r!0, z=0. Figure 8"c#
shows the particle distribution F"v ,! j# for eight phases of the
wave. To obtain these we accumulate photons in their respec-
tive phase bin for 10 ms, that is $100 wave cycles. F"v ,! j#
show two plateaus, corresponding to the particles trapped by
the wave at "vph. The widest plateaus #vT are observed at
phase ! j =1 and 5. These wave-trapped particles propagate in
the wave troughs past the photon detector at z=0, and reflect
at the plasma ends, remaining trapped during hundreds of
end reflections. Figure 8"c# also shows clearly the oscilla-
tions back and forth "$v0# of low velocity "non-trapped# par-
ticles. Note that for TG waves the entire distribution is os-
cillating since the phase velocity is located outside of the
particle distribution.

The solid curves in Fig. 8"c# are the result of the stand-
ing wave model. This particle distribution can be represented
as a contour plot of F"v ,! ,z=0#, as shown in Fig. 9. This
plot resembles a phase space plot, F"v ,z ; t=0#, but all the
measurements of this standing wave are made at z=0. Figure
9 clearly shows the particle trapping over an extent #vT in 2
waves with "vph= "208 cm /ms. The oscillations of par-

ticles around v=0 are also clearly visible and labeled $v0.
#vT and $v0 both result from the wave electric field, and are
related by #vT

2 =2$v0vph.

VI. CHIRPED DRIVE, EXTREME MODIFICATION
OF F„v…

Similar plasma modes can also be excited to very large
amplitude by a downchirped frequency drive.10 Here the
chirped frequency creates extreme modification of F"v#, and
can be tailored to support a mode at almost any frequency.
Figure 10 shows an example of extreme modification of F"v#
from an amplitude-rounded "Aexc%800 mV# burst of 14.5
cycles total, chirped from 20 to 9 kHz. Here, the original
Maxwellian distribution has been essentially split into two
counterpropagating distributions, each supporting an
EAW-like wave on the “inside” of F"v#. This wave rings at
fw=9.9 kHz, with an amplitude giving $n /n$0.3, with very
weak damping %%0.5 s−1, % /&$10−5.
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FIG. 9. "Color online# Contour plot of F"v ,! j# measured at z=0.
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FIG. 8. "Color online# "a# Coherent particle response $F"v#. "b# Phase av-
erage particle distribution before and after EAW. "c# Phase-coherent particle
distribution in the presence of an EAW with vph=208 cm /ms.
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Schamel’s, while the nearly x-independent off-dispersion
plateau of Run B is very different, it being more like a quasi-
linear plateau. Since the on-dispersion case has no frequency
shift, it appears that the trapping dynamics is dominated by
a single wave and a BGK type solution is to be expected.
For the off-dispersion case, where there is a frequency shift
between the driver and the ringing wave, the trapping dy-
namics may involve multiple waves with different phase
velocities. The interaction between these waves could be
causing a band of chaotic dynamics that re-arranges phase
space to provide a more quasilinear type of plateau.

Quantitative evidence for our theory can be extracted
from Fig. 5, which shows f ðx ¼ L=2; vÞ as a function of v for
Run A (top) and Run B (bottom). Again, black dashed and
black dot-dashed lines indicate v/D

and v/, respectively.
Also here the phase velocity shift for the off-dispersion
mode is evident; by taking into account the uncertainty due
the finite time resolution of the simulations, we can estimate
the interval in which the value DvðnumÞ

/ :¼ v/ $ v/D
of the

phase speed shift falls. This gives $0:095 < DvðnumÞ
/

< $0:0104. Using this we can compare the phase velocity
shift obtained for Run B to the analytical prediction using
the “rule of thumb” of Eq. (23) in Ref. 4: the theoretical ex-
pectation for the phase velocity shift of the off-dispersion
mode of Run B is DvðthÞ/ ’ $0:0946 (with a value DvðthÞ/
’ $0:0933 obtained by increasing the resolution by two

orders of magnitude in velocity), in very good agreement
with the value obtained from the simulation. Thus, our
theory not only predicts the qualitative direction of the phase
velocity shift but also it gives a very good quantitative value.

FIG. 3. Phase space contour plot of the electron distribution function at
t ¼ tmax for Run A (top) and Run B (bottom). Black dashed and black
dot-dashed lines indicate the driver phase speed v/D

and the mode phase
speed v/, respectively.

FIG. 4. Surface plot of the electron distribution function at t ¼ tmax for Run
A (top) and Run B (bottom).

FIG. 5. Velocity dependence of f ðL=2; vÞ at t ¼ tmax for Run A (top) and
Run B (bottom); black dashed and black dot-dashed lines indicate v/D

and
v/, respectively.
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shows the particle distribution F"v ,! j# for eight phases of the
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show two plateaus, corresponding to the particles trapped by
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end reflections. Figure 8"c# also shows clearly the oscilla-
tions back and forth "$v0# of low velocity "non-trapped# par-
ticles. Note that for TG waves the entire distribution is os-
cillating since the phase velocity is located outside of the
particle distribution.

The solid curves in Fig. 8"c# are the result of the stand-
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Direct Excitation of High-Amplitude Chirped Bucket-BGK Modes

W. Bertsche, J. Fajans,* and L. Friedland†

Department of Physics, University of California–Berkeley, Berkeley California 94720, USA
(Received 26 September 2003; published 29 December 2003)

For the first time, high amplitude (!n=n ! 40%), high Q (up to 100 000) Bernstein, Greene, and
Kruskal modes have been controllably excited in a plasma. The modes are created by sweeping an
excitation voltage downwards in frequency, thereby dragging a phase space ‘‘bucket’’ of low density
into the bulk of the plasma velocity distribution. The modes have no linear limit and differ markedly
from plasma waves and Trivelpiece-Gould modes.

DOI: 10.1103/PhysRevLett.91.265003 PACS numbers: 52.27.Jt, 52.35.Fp, 52.35.Sb

Plasma waves [Trivelpiece-Gould (TG) waves in finite
geometry [1] ] are easy to generate and ubiquitous in
nature. However, plasma waves are Landau damped,
often quickly. At first glance this damping seems unavoid-
able, so it was quite surprising when Bernstein, Greene,
and Kruskal (BGK) predicted that there exists a broad
class of waves that do not damp. These BGK modes [2]
are undamped because the distribution of the particles in
the wave is already in the Landau relaxed form.

BGK modes underpin much of kinetic wave theory, but
experimental verification of the existence of undamped
BGK modes has proved difficult. It is easy to create
transient large-amplitude waves or structures, but the
waves are typically short-lived or unstable. For instance,
waves created by Wharton, Malmberg, and O’Neil [3]
were unstable due to a sideband instability. More recent
work has not been much more successful [4,5]. Long-
lasting structures can be created by continuous drives;
driven double layers, which are closely related to BGK
modes, have been observed in the earth’s auroral zone [6].
Danielson [7] recently reported that plasma waves even-
tually decay into low amplitude, but long-lasting, BGK
modes.

Here we report that we can excite very high amplitude
BGK modes that differ markedly from the more common
TG modes. The modes are excited by an oscillating volt-
age applied to one end of a pure-electron plasma column
confined in a standard Penning-Malmberg trap [8] [see
Fig. 1(a)]. The resulting density fluctuations are detected
by monitoring the image charge on another cylinder,
typically at the opposite end of the trap. When the plasma
is cold, TG waves are observed as expected. A typical
spectrum is shown in Fig. 2. But as the plasma tempera-
ture T is increased, the TG waves become so heavily
damped that they essentially disappear. Nonetheless, un-
damped waves can be excited in hot plasmas by low
amplitude drives that sweep downward from some fre-
quency fs to some lower frequency fe. Typical response
curves are shown in Fig. 3. Large-amplitude waves are
excited for a very broad range of fs and fe.

We believe that these new waves are BGK modes. They
differ markedly from TG modes. For instance, TG modes

exist only when the plasmas are sufficiently cold, while
our BGK modes exist only when the plasmas are suffi-
ciently hot; there is only a small overlap region. The TG
modes occur at distinct frequencies; even when thermally
broadened, the TG modes possess a well-defined linear
limit. In contrast, the BGK modes have no linear limit. As
can be seen in Fig. 3, they can be excited over a broad
range of frequencies. The TG modes are typically excited

FIG. 1 (color online). (a) Penning-Malmberg trap geometry.
The pure-electron plasma column is confined axially by the
large negative end potentials, and radially by a 1500 G mag-
netic field. Typical plasma densities are "107 cm#3, lengths
"27 cm, and radii "1 cm, and the plasma is confined in
cylinders with radius 1.905 cm. (b) Density fluctuations due
to the BGK mode at the column end, and (c) near the column
center. The positive fluctuations correspond to electron holes.
Because the BGK mode must pass through the center twice
(approaching and leaving) each time the pulse reaches the end,
there are twice as many pulses in (c) as in (b). As expected for
an open-ended reflection, the mode is larger at the end (b) than
near the center (c).
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