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Astrophysical collisionless shocks are ubiquitous
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High power laser
experiments can
study microphysics
associated with these
|0? 4 collisionless shocks

Magnetization
(magnetic/kinetic energy)

o = B*/8n(n
)

T T T >

||
104 102 I 102
sh ."/7)511
Flow velocity

Shocks span a range of parameters:

= Non-relativistic to relativistic flows
= magnetization (ratio of magnetic/kinetic energy density)




Collisionless shocks create self-generated magnetic fields via Weibel ll
instabilities and are responsible for particle acceleration

Generate and amplify magnetic fields

Accelerate particles

« The universe is ubiquitously magnetized

* The origin and nature of the weak seed
fields is unknown

» Collisionless shock may be a possible

mechanism Neronov, Science, 2010
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Diffusive shock acceleration is one of the
proposed mechanism for cosmic ray
acceleration [R. Blandford, Physics Reports,1987]




There are many areas to be explored on astrophysical LL
collisionless shocks
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Basic scaling for laboratory collisionless shock experiments require lL
high velocity and high temperature plasma flows

The conditions for generating a
collisionless shock require:
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We use Omega laser facility to study the microphysics of collisionless
shock generation and Weibel induced magnetic fields

OMEGA (4.5 kJ/target in 1 ns)
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Optical Thomson scattering data provides
measurements of plasma state: V, n_, T, T,

In order to demonstrate that the flows
are in the collisionless regime we
measure the plasma conditions using
Thomson scattering diagnostics
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The Coulomb mean free path length is
much larger than the system size

oss et al., Phys. Plasmas 2012
oss et al., PRL 2013
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Collisionless shock experiments on Omega show clear
filamentation features using the DHe3 mono-energetic proton

backlighter
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= DHe3 proton backlighter (14.7 MeV) radiographed the electromagnetic
field structures in the middle of the counter streaming plasma flows

= Strong striation features are observed

C. M. Huntington et al, Nature Physics, 11, 215 (2015)



Filament temporal evolution shows we are in non-linear LL
regime of Weibel instability growth
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Horizontal line is from Biermann H. —S. Park et al., Phys. Plasmas, 22, 056311 (2015)
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192 beams

1.8 MJ (1.2 MJ, 12/05/09)
500 TW (300 TW, 12/05/09)




NIF experiments use neutron and x-ray diagnostics; LL
7 shots are completed including shots on 6/16/15

Three different types of target were used: 1)

) Self-generated protons measure the
CD/CD; 2) CD/CH; 3) CD single

location of neutron production area

shocked region

Neutrons
Protons
Jgrget for NIF N141022 shot X-rays

= D+D—>T+p
= D+D—3He +n

Shock formation can be diagnosed by:

X-ray brightening from hot plasmas

Neutron yields comparison between CD/CD, CD/CH, CD single foil
Proton yields and their birth location

X-ray/neutron production time
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NIF data shows strong x-ray brightening and proton generations from

central region indicating a shock is formed

X-ray brightening is observed from
the central flow interaction region

N140729: SXI
data from NIF
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Laser hitting the
target

X-ray
brightening
from self-
emission of hot
plasmas

D+D—-T+p
D+D— 3He + n

L

Self generated protons are from the
central region
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Ross et al, in preparation "



There are many areas to be explored on astrophysical

collisionless shocks
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This field is new and the research is in its beginning
stage. Unknowns are:

Nature of fully formed shocks

shock growth rates, saturation condition, linear to
non-linear transition

long-term magnetic fields sustainability

Transition regime/mechanism from collisionless to
collisional shocks

Effect of non-planar flows

Particle First order
acceleration Fermi (DSA) ‘

Relativistic collisionless shocks




There are many areas to be explored on astrophysical LL
collisionless shocks
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Magnetized collisionless shock experiments require strong LL
external magnetic field

NIF

Expt. schematic

63084

Spitkovsky

= Omega experimental results begin to show the magnetic field effect
= External field (<4T) has weak effect on the flow
= We need stronger external magnetic field



Turbulent Dynamo magnetic field amplification experiments attempts LL
to measure density spectrum from turbulence

Courtesy D. Ryu
Warped Shock Front

G. Gregori et al
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Numerical simulations shows that magnetic field is amplified by turbulence
= Magnetic field grows linearly with Rm

= [f Rm above a critical value, dynamo sets in
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important; design/diagnostics in developmental stage

Experiments to study particle acceleration in shocks are UL_
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Self-generated magnetic turbulence scatters
particles across the shock; each crossing
results in energy gain — Fermi Process
(Blanford 1978, Bell 1978, Bhattacharjee 2000)
In shocks, acceleration is first order in v/c

Up to 10-20% energy gain is predicted
(Caprioli & Spitkovsky, ApJ, 2014)

Never observed in laboratory experiments

Possible laboratory experiment to
study particle acceleration

D+D—T+p
D+D— 3He + n CD

Proton/
~ neutron

= Self-generated protons have been
observed in NIF experiment

= B-field generation need to be
confirmed

» Measurements in AE may give
info on particle acceleration

= We need high-resolution proton
and/or neutron spectrometers
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It is very important to have proper diagnostics in order to -

understand the collisionless shock properties

Measure Purpose Diagnostics
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Non-perturbing magnetic field measurements are essential; LL
Pulsed polarimetry will give Faraday rotation measurement
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Summary and open topics uL-

Studying astrophysical collisionless shocks using lasers will result
important scientific findings and high impact on both plasma physics and
astrophysics

This topic is interest to many generations — attracts younger researchers
This field is new and the research is in its beginning stage. Unknowns are:

— Shock growth rates, saturation condition, long-term magnetic fields
sustainability

— Transition regime/mechanism from collisionless to collisional shocks
— Magnetized plasma

— Magnetic field amplification

— Particle acceleration

New magnetic field diagnostics, plasma probing diagnostics, strong
magnetic field coils, low-energy high-resolution proton/neutron
spectrometers are essential

Facility needs are:
— Low-Z target: H, LiH, LiD
— Large phase plates on Omega and NIF
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