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Societal relevance of low temperature plasmas
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Plasma Etching, Sputtering and Deposition processes on microscopic scales are irreplaceable tools for
semiconductor manufacturing and other key industries (automotive, tool manufacturing, textiles, etc.).

Without plasma technology no laptop and smartphone would exist.

In order to fulfill Moore’s law in the future, intensive research in low temperature plasma science is
required to overcome process limitations.
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Societal relevance of low temperature plasmas

Biomedical applications, light sources, plasma and thrusters.

There is little understanding of the physics of plasma-liquid and plasma-human tissue interactions
required for plasma medical applications.

Plasma surface interactions are generally poorly described by models/simulations due to unknown
surface coefficients (secondary electron emission, particle reflection, etc.).
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Research Frontier: It’s all about control
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Plasma processing applications are usually optimized empirically without understanding the heating
dynamics of electrons, ions, and neutrals.

Efficient process optimization must be based on a detailed scientific understanding of non-local
effects of global control parameters on the heating dynamics — predictive control of plasma kinetics.

Based on these insights electron and ion energy distribution functions can be tailored and process
rates as well as uniformities can be optimized.
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Required approach

A combination of state-of-the-art experimental diagnostics, numerical simulations, and analytical
models 1s required to get a complete understanding of particle heating dynamics and their links to the
formation of flux-energy distribution functions.

Often (sub-)nanosecond time resolution is required to resolve the fastest timescales. This is an
extreme (experimental) challenge.

Fundamental understanding must be transferred from academia to industry (collaborations,
industrially relevant reactive gas mixtures).

w WEST VIRGINIA UNIVERSITY

Physics



Impact on Plasma Science - 1t’s a hot topic
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Fundamental understanding of electron heating in CCPs
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J. Schulze et al. 2015 Plasma Sourc. Sci. Technol. 24 015019

Discharge conditions (PIC/MCC simulation): Argon, 20 Pa, 5 cm electrode gap, 13.56 MHz, 400 V

Current understanding: - Electrons are heated collisionlessly by the expanding RF sheaths.
- There is no E-field outside the sheaths and symmetry in time.
- The current is sinusoidal.

Recent findings: - There is essentially no collisionless heating (Lafleur et al. 2015 PSST 24 044002).
- There are strong electric fields outside the sheaths and a temporal asymmetry.
- The current is often non-sinusoidal (resonances, Mussenbrock et al. 2008 PRL 085004)
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A variety of electron heating modes

electron heating rate ionization rate electric field electron density
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Different heating modes exist and are only partially understood. The presence of a different mode
drastically changes process relevant plasma parameters. Mode transitions must be studied.
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The Electrical Asymmetry Effect
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In RF plasmas, the DC self-bias (difference between mean sheath voltages) is an important parameter to
control the ion energy at the electrodes:
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In classical CCPs, the extrema of the driving voltage waveform are identical and a DC self bias can only
be generated via € # 1, 1.e. a geometric discharge asymmetry. The EAE allows to generate a DC self bias
electrically by tailoring the driving voltage waveform, e.g. different extrema, different slopes (sawtooth).
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Electrical control of the IEDF
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The IEDF can be controlled by tuning the phase. The role of the electrodes can be reversed electrically.

This effect is strongly affected by the electron heating mode and works differently in different

chemistries, pressures, frequencies. Very little is known about this.

The EAE allowed to improve the efficiency of PECVD processes (Si:H deposition) by a factor of 3.
Other applications must be studied (etching, sputtering).
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Voltage waveform tailoring
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In principle every driving voltage waveform can be realized as a Fourier Series of N consecutive harmonics
of a fundamental frequency, f:

N N
P(t) = dpcos (2mkft + Oy) with Prot = > Pi
k=1 k=1

In this way the electron heating dynamics can be tailored on a ns-timescale and the sheath voltage
waveform can be tailored to customize IEDFs.
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Optimization of the EAE (simulation)
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Conditions: Argon, 10 Pa, 2 cm gap, = 13.56 MHz, ¢t = 300 V, optimized harmonics’ amplitudes.

Adding more consecutive harmonics to the driving voltage waveform, while keeping the total voltage
amplitude constant, allows to generate a stronger DC self bias and to control the mean ion energy over
a larger range.

This must be studied experimentally in different plasmas sources, gas mixtures, etc.
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Complex heating dynamics (3 Pa, 800 V, N =4)
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The electron heating dynamics in multi-frequency CCPs are complex and cannot be explained by
classical concepts of stochastic heating.

Ambipolar electron heating, NERH, waves, and interference effects play an important role.




Customized 10n energy distributions
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t/T, parameter scaling. Nothing is known about impact on applications.
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Uniformity control
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In large area CCPs, electromagnetic effects such as the
Standing Wave Effect can induce lateral inhomogeneities
of process relevant plasma parameters, e.g. the ion flux.

This represents a very significant problem in applications
ranging from PECVD and dielectric etching to RF
sputtering.

W A. Perret et al. 2003 Appl. Phys. Lett. 83 243 A
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Uniformity Control via voltage waveform tailoring
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Space resolved lateral ion flux at the grounded electrode of a large area CCPs (rectangular electrodes,
40 cm x 40 cm) operated in H> at 150 Pa, 1.4 cm electrode gap, Pso =200 W, Pgo =450 W.

By tuning the phase between the driving harmonics lateral non-uniformities of the ion flux due to the
Standing Wave Effect can be eliminated completely.

Further research is required to explain these observations (modeling).
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Realistic surface coefficients in simulations
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In most simulations, surface coefficients are guessed, e.g. vy = 0.1. This can lead to drastically wrong results.
Surface coefficients typically depend on the incident particle energies, impact angle, surface material, etc.

Typically, they are only known for ultra-clean surfaces from beam experiments. The plasma, however,
usually alters the surface conditions and can change the surface coefficients drastically.

Models to calculate and diagnostics to measure surface coefficients in-situ in the plasma are required.
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Conclusions

Control of heating dynamics and distribution functions is an important hot topic of current research.

A high number of important fundamental questions remains unanswered.

Next generation plasma processing tools require process optimization based on a detailed understanding
of the plasma physics rather than trial-and-error methods. Novel concepts to customize distribution

functions are required.

There is a significant lack of funding for fundamental research on particle heating dynamics and control
of distribution functions in the US.

Consequently, the US is loosing its leading role in this field to Europe and Asia. Moreover, the education
of the next generation of process engineers and scientists is in great danger.

If adequate funding is not restored, the societal and economic impact will be enormous. US companies
will not be competitive in this research oriented multi-billion dollar industry.

Collaborations between companies and academia must be strengthened. Industry and national funding
agencies should provide significant levels of funding together.
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