
PLASMA FIELD THEORY

P. J. Morrison

Department of Physics and Institute for Fusion Studies

The University of Texas at Austin

morrison@physics.utexas.edu

http://www.ph.utexas.edu/∼morrison/

WWW August 5, 2015

Many collaborators and students over the past 35+ years. Re-

cently: Tassi, Chandre, Vittot, Lingam, D’Avignon, Yoshida,

Kawazura, Abdelhamid, Pegoraro, Andreussi, Brizard, Burby,

Qin, ...

I apologize for giving talk in meeting I organized!



Overview

• Soap Box

• Theory Grand Challenge/Frontier



A First Tale

Kaluza-Klein (1919) 5D theory of {Gravity} ∪ {E&M} →

Pauli (1953) 6D theory of Gravity (unpublished) →

Yang-Mills (1954) nonabelian gauge theory →

Symmetry Breaking (1960) → Standard Model



Moral

Things may not turn out like you think they will.

Yet, good things can happen.



A Second Tale

Dirac (1931,1948) symmetrize E&M by adding monopoles →

Prolonged Search (1970s onward) → 0



Moral

Pure theory can be a waste. But ... ?



Fundamental

Fundamental vs. Applied

Plasma theory = {Newton} ∪ {Maxwell}



Moral

Pure theory can be a waste. But ... ?



LETTERS

Magnetic monopoles in spin ice
C. Castelnovo1, R. Moessner1,2 & S. L. Sondhi3

Electrically charged particles, such as the electron, are ubiquitous.
In contrast, no elementary particles with a net magnetic charge
have ever been observed, despite intensive and prolonged searches
(see ref. 1 for example). We pursue an alternative strategy, namely
that of realizing them not as elementary but rather as emergent
particles—that is, as manifestations of the correlations present in
a strongly interacting many-body system. The most prominent
examples of emergent quasiparticles are the ones with fractional
electric charge e/3 in quantum Hall physics2. Here we propose that
magnetic monopoles emerge in a class of exotic magnets known
collectively as spin ice3–5: the dipole moment of the underlying
electronic degrees of freedom fractionalises into monopoles.
This would account for a mysterious phase transition observed
experimentally in spin ice in a magnetic field6,7, which is a
liquid–gas transition of the magnetic monopoles. These monopoles
can also be detected by other means, for example, in an experiment
modelled after the Stanford magnetic monopole search8.

Spin-ice materials are characterized by the presence of magnetic
moments mi residing on the sites i of a pyrochlore lattice (depicted
in Fig. 1). These moments are constrained to point along their respec-
tive local Ising axes êei (the diamond lattice bonds in Fig. 1), and they
can be modelled as Ising spins mi 5 mSîeei , where Si 5 61 and m~ mij j.
For the spin-ice compounds discussed here, Dy2Ti2O7 and Ho2Ti2O7,
(where Dy is dysprosium and Ho is holmium) the magnitude m of the
magnetic moments equals approximately ten Bohr magnetons
(m < 10mB). The thermodynamic properties of these compounds are
known to be described with good accuracy by an energy term that
accounts for the nearest-neighbour exchange and the long-range
dipolar interactions9,10 (for a review of spin ice, see ref. 4):
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The distance between spins is rij, and a < 3.54 Å is the pyrochlore
nearest-neighbour distance. D 5 m0m2/(4pa3) 5 1.41 K is the coup-
ling constant of the dipolar interaction.

Spin ice was identified as a very unusual magnet when it was noted
that it does not order to the lowest temperatures T even though it
appeared to have ferromagnetic interactions3. Indeed, spin ice
was found to have a residual entropy at low T (ref. 5), which
is well-approximated by the Pauling entropy for water ice,
S < SP 5 (1/2)log(3/2) per spin. Pauling’s entropy measures the huge
ground-state degeneracy arising from the so-called ice rules. In the
context of spin ice, its observation implies a macroscopically degen-
erate ground state manifold obeying the ‘ice rule’ that two spins point
into each vertex of the diamond lattice, and two out.

We contend that excitations above this ground-state manifold—
that is, defects that locally violate the ice rule—are magnetic
monopoles with the necessary long-distance properties. From the
perspective of the seemingly local physics of the ice rule, the emergence
of monopoles at first seems rather surprising. We will probe deeper

into how the long-range magnetic interactions contained in equation
(1) give rise to the ice rule in the first place. We then incorporate
insights from recent progress in understanding the entropic physics
of spin ice, and the physics of fractionalization in high dimensions11–15,
of which our monopoles will prove to be a classical instance.

We consider a modest deformation of equation (1), loosely
inspired by Nagle’s work16 on the ‘unit model’ description of water
ice: we replace the interaction energy of the magnetic dipoles living
on pyrochlore sites with the interaction energy of dumbbells consist-
ing of equal and opposite magnetic charges that live at the ends of the
diamond bonds (see Fig. 2). The two ways of assigning charges on
each diamond bond reproduce the two orientations of the original
dipole. Demanding that the dipole moment of the spin be repro-
duced quantitatively fixes the value of the charge at 6m/ad, where
the diamond lattice bond length ad~

ffiffiffiffiffiffiffi
3=2

p
a.

The energy of a configuration of dipoles is computed as the pair-
wise interaction energy of magnetic charges, given by the magnetic
Coulomb law:
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Figure 1 | The pyrochlore and diamond lattices. The magnetic moments in
spin ice reside on the sites of the pyrochlore lattice, which consists of corner-
sharing tetrahedra. These are at the same time the midpoints of the bonds of
the diamond lattice (black) formed by the centres of the tetrahedra. The ratio
of the lattice constant of the diamond and pyrochlore lattices is
ad=a~

ffiffiffiffiffiffiffiffi
3=2

p
. The Ising axes are the local [111] directions, which point along

the respective diamond lattice bonds.
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Moral

Models are models and

speculative theory can lead to good things too.



Theory for Theory’s Sake

• Germinates ideas

• Provides vocabulary

Opinion: plasma physics needs more TTS.



Theory Grand Challenge/Frontier:

Topological Plasma Physics



MHD

Alfvén (1942)→ Newcomb∗ (1962)→ Hamiltonian theory (1980)

frozen flux 6= frozen-in field lines

Lie dragged 2-form

∗ Examined MHD as a field theory. Others in the 1960s looked

at other plasma models: Sturrock, Low, Suramlishvili, ... .



MHD Properties

Flux Conservation (Alfv́en):

ΦS(t) =
∫
S
d2x ·B ← S moves with V

Magnetic Helicity Conservation (Woltjer):

CB =
∫
D
d3xA ·B ← B = ∇×A

Cross Helicity Conservation (Woltjer):

CV =
∫
D
d3xV ·B ← D is fixed volume



Helicity Consequence

Magnetic helicity CB is a “topological” quantity that measures,
e.g., linking

CB =
∫
D
d3xA ·B = 2nΦ1Φ2 , ΦSi =

∫
Si
d2x ·B ,

where n is the linking number.
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5.1  Magnetic helicity

Magnetic helicity is a quantity closely related to a property of the force-free field (Woltjer, 1958), and is defined by 

(43)

where  and  is the vector potential. When  is given,  is not unique and a gradient of any scalar 
function can be added without changing . Such gauge freedom does not affect the value of  if the volume  is 
bounded by a magnetic surface (i.e., no field lines go through the surface). Figure 8 shows simple torus configurations and 
their magnetic helicities. As can be guessed from the figures, magnetic helicity is a topological quantity describing how the 
field lines are twisted or mutually linked, and is conserved when resistive diffusion of magnetic field is negligible. In the 
case of the solar corona, the bottom boundary (the photosphere) is not a magnetic surface, and field lines go through it. 
Even under such conditions, an alternative form for the magnetic helicity which does not depend on the gauge of  can be 
defined (Berger and Field, 1984; Finn and Antonsen Jr, 1985). On the Sun one finds the hemispheric helicity sign rule (see, 
e.g., Pevtsov et al., 1995; Wang and Zhang, 2010, and references therein). For various features like active regions, 
filaments, coronal loops, and interplanetary magnetic clouds the helicity is negative in the northern and positive in the 
southern hemisphere.
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Figure 8:  Magnetic helicity of field lines in torus configuration: untwisted (left), twisted by turns (middle), and two untwisted but intersecting tori (right).  stands for 
the total magnetic flux.
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Similarly cross helicity is linking of V with B (Moffatt).

Religion: Beltrami states that minimize magnetic energy
∫
d3x |B|2/2

at fixed CB are stable and preferred:

∇×B = λB .

Actually merely an easy variational principle for equilibria. ∃ such
variational principles for all MHD equilibria.



More MHD Helicity Etc.

• Taylor States, Helicity injection, toroidal current, continuous

operation, etc. (Finn and Antonsen e.g.)

• W. Irvine (Chicago)

– Generates and visualizes fluid helicity:
∫

(∇× v) · v

– Examines knotted vortices and effect of viscosity.

– For vortex bundle: Helicity = linking + writhe + twist

– Helicity conserved upon reconnection but not linking.



Hamiltonian Field Theory (HFT)

Noncanonical Poisson bracket:

∂ψ

∂t
= J

δH

δψ
= {ψ,H} ,

Retains Poisson Bracket Properties:

antisymmetry −→ {F,G} = −{G,F} ,

Jacobi identity −→ {{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 0



Casimir Invariants

Helicities are Casimir Invariants:

{F,CB,V }MHD = 0 ∀ functionals F.

Casimirs are a consequence of Poisson bracket degeneracy.

Automatic if know Hamiltonian structure.



Extended MHD (XMHD) Scaled

Ohm’s Law:

E + V ×B =
d2
e

ρ

(
∂J

∂t
+∇ ·

(
V J + JV −

di
ρ
JJ

))

+
di
ρ

(
J ×B −∇pe

)
.

Momentum:

ρ

(
∂V

∂t
+ (V · ∇)V

)
= −∇p+ J ×B

−d2
e J · ∇

(
J

ρ

)
.

Two parameters, de = c
ωpeL

measures electron inertia and di =
c

ωpiL
accounts for current carried by electrons mostly ... .

HMHD + IMHD = XMHD



Is XMHD a HFT?

Candidate Hamiltonian:

H[de;B] =
∫
d3x

[
ρ
|V |2

2
+ ρU(ρ) +

|B|2

2
+ d2

e
|J |2

2ρ

]

H[de;B] is conserved. Pressure, p = ρ2∂U/∂ρ.

What is the Poisson bracket? Casimirs? Helicities?



HMHD, IMHD, and XMHD are HFTs

Yoshida, Abdelhamid, Kawazura, pjm, Lingam, Miloshevich

Poisson Brackets:

{F,G}HMHD = {F,G}MHD + new term

= {F,G}MHD + {F,G}Hall

{F,G}IMHD = {F,G}MHD + complicated terms

{F,G}XMHD = {F,G}MHD + complicated terms

Casimirs:

There exist generalized helicities. Whence?



Three Remarkable Identities I

New magnetic variable:

Bi = B + di∇×V .

Identity I:

{F̃ , G̃}HMHD[di;B] ≡ {F,G}HMHD [−di;Bi]

HMHD Helicity/Casimirs:

CB =
∫
D
d3xA ·B

C2 =
∫
D
d3xAi · Bi =

∫
D
d3x (A + diV) · (B + di∇×V) .



Three Remarkable Identities II

Introduce ‘inertial’ magnetic field B? and Be:

B? = B + d2
e ∇×

(
∇×B

ρ

)
,

Be = B? − de∇×V ,

Identity II:

{F̃ , G̃}IMHD[de;B
?] ≡ {F,G}HMHD [2de;Be] .

IMHD Helicities/Casimirs:

C±IMHD =
∫
D
d3x

(
A? ± deV

)
·
(
B? ± de∇×V

)
,



Three Remarkable Identities III

Last new variable:

Bλ± = B? + λ−1
± ∇×V , λ± =

−di ±
√
d2
i + 4d2

e

2d2
e

.

Identity III:

{F̃ , G̃}XMHD[di, de;B
?] ≡ {F,G}HMHD

[
di − 2λ−1

± ;Bλ±

]
,

XMHD Helicities/Casimirs:

C±XMHD =
∫
D
d3r

(
V + λ±A

?) · (∇×V + λ±B
?) ,



Questions

• What do these helicities mean for theory and/or experiment?

• To what extent do these helicities reflect resilient propreties?

• What about more realistic magnetic reconnection?

• Can one inject them?

• Etc.

Topological Plasma Physics, a Theory Frontier?




