
Collisions in Strongly-Coupled and 
Strongly-Magnetized Plasmas 

Dan Dubin UCSD 
Challenges:  

Describe and measure collisional relaxation for strongly-coupled plasmas  
Describe and measure collisional relaxation for plasmas in strong magnetic fields 
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kinetic energy per charge < Coulomb interaction

for nearest neighbors

magnetized plasma: rc < lD
cyclotron radius < Debye length

Þ B > 0.32 Tesla n /1012cm-3  (electrons)

ICF plasma; white dwarf star; giant planet interior; cryogenic nonneutral plasma 

Tokamak edge plasma; sunspot; nonneutral plasma 

Very strongly-magnetized plasma:  rc < Z 2e2 / kBT



Transport Coefficients in Strongly-Coupled Plasma 

Large –Scale simulations essential eg. PPPM MD  

Higher temperature: gas-like 
Large mean-free path 

Lower temperature: fluid-like 
            caging apparent 

LANL Dense Plasma Theory Group 

Simulations have provided intuition for new effective potential theory of 
                        collisional transport in strongly-coupled plasmas 



Shear viscosity in a strongly-coupled single-component plasma 

Other transport coefficients?  Effect of magnetic field? 
Long-range interactions?     

Daligault, Rasmussen and Baalrud, Phys. Plasmas 2014 
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G = e2 / akBT



Classical collision theory does not work for 

magnetized plasma with 

 

rc < lD

Frequency of steps Dt -1 ~ collision frequency nc 

D ~
< Dr
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Dr  ~ rcStep size 

Spitzer 1955 
Longmire and Rosenbluth 1956 
Simon 1956 
Rosenbluth and Kaufmann 1958 
Braginskii  1958 
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c = Heat  

conduction 

Cross-field particle diffusion: random steps 
                            from collisions 

µ1/ B2



When   

• Most collisions are long-range: 
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Heat conduction of parallel energy: 

E´B

E´B

Particle Diffusion from ExB drifts: 

 D ∼10´Dclass (for current experiments 
 at UCSD) 



Emission and adsorption of lightly-damped plasma waves 

(predicted to) enhance transport 

B
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r ~ plasma width L  (but n < nc ) 

>~if L 102 lD 

Rosenbluth and Liu ‘76 
Dubin  and O’Neil ‘97 

if L < 102 lD k = 1.2nnclD
2

Waves enhance transport: k ~ 0.01 nnclDL

Waves unimportant: 
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Thermal Conduction: theory and experiment 
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k  is up to 300x classical 

Hollmann , Anderegg and Driscoll, PRL 
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Theory of long range ExB drift collisions that includes effect of collisional caging 
 agrees with experiments! 

D = 3 DIUO 

D
nq ln(lD / rc )

106cm-3

é 

ë 
ê 

ù 

û 
ú 
B

4T

é 

ë ê 
ù 

û ú 

-2 cm2

sec

æ 

è 
ç 

ö 

ø 
÷ 



Collisional caging  enhances some relaxation processes from  long range collisions  

• Guiding centers can collide more than once 
while remaining correlated 

• Multiple correlated 

collisions increase  cross-field  

particle diffusion and  collisional  

drag force  

D. Dubin, Phys. Plas. 21, 052108 (2014) 

E´B

ExB drifts are in the same direction for each collision of this pair 
 



Summary 

• There has been recent progress in our  
understanding of collisional processes in 
strong magnetic fields and in strongly-coupled 
plasmas 

• More remains to be done:  

• experimental tests; transport theory for 
magnetized and strongly coupled plasma; 
transport from plasma waves/phonons… 


