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We describe three frontier contexts for “achieving an ohmically 
heated plasma for fusion energy”

1.  Heating a fusion plasma to burning conditions without radio-frequency 
or neutral beam power sources

2.  Advancing the predictive understanding for magnetic confinement of hot 
plasmas

3.  Advancing the physics and multi-scale modeling of self-organized 
plasmas for both basic plasma science and fusion

These contexts are closely associated with elements of the “exploratory 
magnetic confinement” portfolio and are part of a more general frontier for 
multi-configuration magnetic confinement research



Magnetic confinement of a hot plasma in a toroidal configuration 
for fusion energy

3 ways to heat#
a toroidal plasma



There are three ways to heat a toroidal plasma to burning 
plasma conditions
•  Neutral beam injection

–  Dominant source for all present-day tokamak experiments
–  Very challenging for a fusion reactor plasma, requiring 1-2 MeV neutrals and 

large holes in the wall and blanket

•  RF injection
–  Preferred choice in almost all reactor design studies
–  The boundary conditions for ion cyclotron and lower-hyrbid antennas are very 

different than for the majority of the plasma-material interface that must 
accommodate large heat, particle, and neutron fluxes

–  A reactor must achieve low maintenance and high reliability for high availability

•  Ohmic dissipation of plasma current
–  Induction is the standard method for forming a tokamak plasma, incl. ITER
–  A segmented wall/blanket is invisible to a low frequency inductive electric field, 

allowing the first-wall to be entirely covered by suitable materials
–  Ohmic heating is small in a tokamak, since Ip ~ q–1  (where q = rBT / RBP >1 )
–  Ohmic heating is large in a reversed-field pinch or spheromak, since q(r) < 1



ARIES-AT represents an economically attractive tokamak fusion 
reactor and a target for the advanced tokamak program

Najmabadi et al, FED 80, 2006

Key features:
•  Pf = 1.7 GW
•  Pn /A = 3.3 MW/m2

•  Q = 49
•  Steady-state (91% bootstrap)
•  Lower-hybrid and fast-wave 

for J(r) control

Design has 6 distinct rf current drive systems



The reversed field pinch and spheromak configurations are 
magnetized by large, field-aligned plasma current

Reversed Field Pinch Spheromak



Ohmic ignition and high fusion gain are possible for an RFP#
plasma if the energy confinement is tokamak-like

5-10X improved 
confinement in MST

Tokamak-like confinement in#
 present-day RFP experiments

Key questions:
– Transport mechanism(s)?
– Scaling?

Ohmic Ignition Power Balance#
(Pn /A = 5 MW/m2 for Pf = 2.3 GHz)

(see white paper for other parameters)
Ip!="30 MA, !B" = 5.6 T, Bcoil ~ 3 T, P# = 70 MW
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Frontier Context 2: 
Advancing the predictive understanding for

magnetic confinement of hot plasmas



Arguably the highest priority issue for fusion energy is convincing 
the world its science foundations are predictive

•  Predictive science can help resolve key concerns for future fusion research:
–  Cost and complexity imply extrapolation beyond an established experimental 

basis for any particular development path appears unavoidable
–  The large gap between present-day experiments and a GW reactor that 

operates for millions of seconds implies the challenges are not fully articulated
–  Tradeoffs in physics, methodologies, and technologies are necessary

No ignition (yet)
$$ ! $$$, schedule t.b.d.



The named toroidal magnetic configurations (tokamak, 
stellarator, etc.) are really one grand experiment

•  “Predictive” implies understanding the plasma’s behavior when changing key 
variables

•  Experimentally it is impractical to adjust the major variables of toroidal confinement 
in a single laboratory setting

•  The frontier for predictive fusion science should embrace multiple configurations as 
close cousins, not just view them as competitors for fusion

•  In this context, “ohmic heating to ignition” is synonymous with understanding the 
behavior of an axisymmetric toroidal configuration that has a large plasma current



The continuum of magnetic configurations is most often cast to 
emphasize tradeoffs in their differences

Levitated Dipole 
Steady-state with internal coil 

(no plasma current or TF) 



Can the breadth of magnetic configurations be captured in a few 
model equations, and even predict new optimizations?

•  To be predictive, we must develop plasma models and test their experimental 
validity versus the major variables that define magnetic configurations

•  This challenge is cross-cutting for plasma science: equilibrium and stability, 
nonlinear self-organization, turbulence and transport, wave-particle interactions, 
plasma-material interface

E = −V×B+ 1
ne J×B−

1
ne∇pe +ηJ+

me
ne2

∂J
∂t

nmi
dV
dt

= J×B−∇p−∇⋅Πgyro −∇⋅νnmiW

Ohm’s law:

Momentum:

Example: Extended MHD 

Example: Gyrokinetics for strongly magnetized plasmas …
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Excellent opportunities for validation of important physics models 
and codes using the RFP plasma

•! Nonlinear, visco-resistive MHD is ripe for rigorous 
validation

•! Investigation of high-k instabilities challenges#
established gyrokinetic theory and modeling

•! Beam-driven instabilities in the RFP#
stretch the parameter#
space for critical#
reactor physics
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MST’s advanced diagnostic 
set provides crucial data

Control tools yield several#
distinct operating regimes   
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Frontier Context 3: 
Advancing the physics and multi-scale 
modeling of self-organized plasmas for 

both basic and applied science



Nonlinear self-organization creates the possibility for a steady-
state plasma current using ac induction

•  The basic science and astrophysical context for the self-organization of RFP and 
spheromak plasmas is discussed by M. Nornberg and other papers on 
reconnection and dynamo

•  Here we emphasize a fusion-relevant application

Oscillating Field Current Drive
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Physics basis is promising

•! OFCD modulation replaces steady induction:

S = 5$105

E + ! !v" !B# =!J $ !v̂" B̂#+ ! !v" !B# =!J

IP

(steady induction) (OFCD)

Nonlinear MHD Computation

Ebrahimi et al
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The stage is set for rapid progress toward predictive fusion 
science

•  An emphasis on “verification and validation” helps provide a focal point in defining 
the spectrum of required program elements in experiment, theory, and modeling

•  Experiments that span configuration space are essential to maximize predictive 
capability, and they must be well diagnosed to support validation

•  Modeling must be:
–  Built capable for adjusting major variables, e.g., avoid ordering for an 

assumed large toroidal field
–  Multi-scale and global to address boundary conditions, inhomogeniety, and 

feedback between small and large scales
–  Supported by computational resources that allow both development and 

iterative refinements associated with verification and validation




