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2. Orthogonal petawatt approach to dense plasma heating
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5. Conversion of light energy to matter energy at the intensity frontier

e Conclusions
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High intensity laser physics proceeds through
relativistic oscillatory dynamics of electrons
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Scale of existing investments in high intensity laser
science exceeds >$420M

¢$300M for ORION

For future higher resolution Compton Radiography:
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Scale of existing investments in high intensity laser

science exceeds >$420M

¢ $300M for ORION

¢ $60M OMEGA EP

¢ $50M NIF-ARC

¢ $20M Jupiter Laser Facility

e Simulation codes incl. PSC (kinetic / particle-
in-cell), LSP (PIC), EPOCH (PIC), OSIRIS
(PIC), ZUMA (rad-hydro), FLASH (rad-hydro),

and many more

e Advancing frontiers implies using resources

eEnormous leverage here since many

of these resources are in place

For future higher resolution Compton Radiography:

}m-classnmpulse 10 from

the Advanced Radiographic »

Capability (ARC)
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For FI's promise, there are generally understood to
be two important issues

Coupling an optical laser to optically-thick fuel
Implies a particle conduit —> Relativistic electrons

1) Electron Angular 2) Electron Energy Spread

Divergence
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Issue 1: Mitigating the divergence using resistivity-
gradient-generated magnetic focusing structures
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Issue 1: Mitigating the divergence using resistivity-
gradient-generated magnetic focusing structures
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Issue 2: Laser energy is typically absorbed into
electrons exhibiting a quasi-Maxwellian distribution

particles

Absorption f: conversion of light
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Issue 2: Laser energy is typically absorbed into
electrons exhibiting a quasi-Maxwellian distribution
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Mitigating issue 2: We have developed novel CS
methods to help understand “at birth™ electron energies

e ‘Characterisation of Dynamical Physical

Systems”

e Method for understanding energy flow

through complex physical systems

e Simulations, high rep rate experiments,

HED plasmas

M. C. Levy, UK Patent Application No. 1509636.5 (2015)
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Mitigating issue 2: We have developed novel CS
methods to help understand “at birth” electron energies

e ‘Characterisation of Dynamical Physical

ISIS

Systems”
INNOVATION

e Method for understanding energy flow

through complex physical systems | N e -

e Simulations, high rep rate experiments,

HED plasmas

e Connections to industry via innovations

in high intensity laser-plasma science

‘ We are making progress on this key issue ‘

v

M. C. Levy, UK Patent Application No. 1509636.5 (2015)



Frontier beyond Fl 1): Compact and affordable
plasma-based laser amplifiers

3
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e To achieve >50kJ of petawatt laser energy, we are pursuing plasma-based Brillouin and Raman
amplification schemes

e Currently, the best results produce pulses of less than 1 TW, far from the 10 PW required. However,
recent theoretical results indicate substantial improvements
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e To achieve >50kJ of petawatt laser energy, we are pursuing plasma-based Brillouin and Raman
amplification schemes

e Currently, the best results produce pulses of less than 1 TW, far from the 10 PW required. However,
recent theoretical results indicate substantial improvements

e Opens a path to cheaper and higher power lasers at modest theoretical and experimental cost



Frontier 2). We have recently proposed an orthogonal
petawatt approach to dense plasma heating

e Small amount of additional heating (~3kJ) could allow

the low-adiabat ICF point design to achieve ignition

e Crossing e- beams provide this auxiliary heating at

shock convergence

e Beam-beam interaction yields a broad spectrum

of unstable modes in k-space

a——— .
/ . Growthrate @ Careful analysis of full-scale 2D simulations using
5 | 222 both AWE’s and RCUK’s supercomputers is on-going
0.10 e Preliminary results are promising
0.05

ky (wp/c)
Credit: N. Ratan



Frontier 2). We have recently proposed an orthogonal
petawatt approach to dense plasma heating

nc ¢ Small amount of additional heating (~3kJ) could allow

the low-adiabat ICF point design to achieve ignition

e Crossing e- beams provide this auxiliary heating at

shock convergence

e Beam-beam interaction yields a broad spectrum

of unstable modes in k-space

; Growthrate @ Careful analysis of full-scale 2D simulations using
0.25
- 0.20
0.15

0.10 e Preliminary results are promising
0

e Offers a novel path to high gain ICF

both AWE's and RCUK’s supercomputers is on-going

k, (wp/c)

wp/c

Credit: N. Ratan



Frontier 3): Novel radiation sources based on
resistive guiding of relativistic electrons
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e Electron guiding due to large B-fields present at step-like interfaces
e Larmor radius for 1 MeV electrons, B~100 MG — r = 0.3um
e Synchrotron critical frequency ~cy3/r—hw ~ 24 eV

eFor 10 MeV electrons, B~ 1 GG —hw ~ 24 keV
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e Electron guiding due to large B-fields present at step-like interfaces
e Larmor radius for 1 MeV electrons, B~100 MG — r = 0.3um
e Synchrotron critical frequency ~cy3/r—hw ~ 24 eV

eFor 10 MeV electrons, B~ 1 GG —hw ~ 24 keV

eNovel hard X-ray radiation sources for radiography



Frontier 4). Gravity analogues using accelerated

frames of reference

EVENT HORIZONS: From Black Holes to Acceleration

Stationary
Observer

Black Hole

Hawking j >
Radiation kT

Event Horizon

hg

2TtC

A stationary observer outside
the black hole would see the
thermal Hawking radiation.

Event Horizon

Accelerating
Observer

Radiation

An accelerating observer in vacuum
would see a similar Hawking-like
radiation called Unruh radiation.



Frontier 4): Laboratory probes of quantum
mechanics in non-Minkowskli space-time

e Electron acceleration in laser focal

to x ray spectrometer
and detector

region at 10" W/cm? — a ~10%? g

e Conditions mimick, by virtue of the

equivalence principle, a non-Minkowski

S pace-tl me High-intensity laser Gas jet High-energy

10" W/cm? laser 100 J, 1 ns

e Modified electronic metric tensor

manifests as a broadening of the

S(k.w) = '." m

m hq*)j
" 3 - ex — > (1) == —
Thomson scattered X-ray light' \ 2ng?ks Tes(q.a) P! 2q-kBT.ﬂ-(q.a)( 2m ]

>
ma-

Ter(ga)=T+ 2
eff (q'a,) +/ 2kBq2C2

'B. Crowley et al. (2012). Sci. Rep., 2(1), 491. G. Gregori, M. C. Levy et al., Submitted.
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e Electron acceleration in laser focal

to x ray spectrometer
and detector

region at 10" W/cm? — a ~10%? g

e Conditions mimick, by virtue of the

equivalence principle, a non-Minkowski

S pace-tl me High-intensity laser Gas jet High-energy

10" W/cm? laser 100 J, 1 ns

e Modified electronic metric tensor

manifests as a broadening of the — . b\
] S(k.w) = / s exp|— — , ((.-)—L)
Thomson scattered X-ray light’ V 21’k Tefr(q.0) P[ 2¢°kpTe(q.a) \ - 2m
e Potential fundamental physics . ma’

T,ﬂ‘ (q.a ) =T+ 4

probes based on high intensity lasers 2kpq*c?

'B. Crowley et al. (2012). Sci. Rep., 2(1), 491. G. Gregori, M. C. Levy et al., Submitted.



Frontier 5). Next logical step in relativistic HED
science is towards the intensity frontier

Fecused intensity (W/cm?)

Nonlinear QED: F-e-A. = 2mnc2 Ultrarelativistic
1030 “ A o intensity is defined
1 Pev with respect to the
2
r n =m ,
Ultrarelativistic optics < EL p - | fa , 4pc ,
1025 R intensity ~10%* W/cm
Eq = myc? 1 TeV
ILE
jo20 Relativistic optics Apolion
1 MeV
Bound electrons
1015
1eV

Optical Laser Development



Frontier 5). Next logical step in relativistic HED
science is towards the intensity frontier

Fecused intensity (W/cm?)

.  Fod = 2 Ultrarelativistic
Nonlinear QED: E-e-A, = 2mc intensity is defined

1 Pev with respect to the
proton £q = m,c?,

intensity ~102% W/cm?
TeV
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Optical Laser Development



Frontier 5): QED electron-pair and gamma-ray
creation play important roles at the intensity frontier

QED Electron-Positron Pair Cascades
at ~ 10 W cm2
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Frontier 5): QED electron-pair and gamma-ray
creation play important roles at the intensity frontier

QED Electron-Positron Pair Cascades
at ~ 10 W cm2
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Gamma-rays (blue), electrons & positrons (red)
at ~ 1022 W cm (record: at ~ 10°2 W cm™)

Ridgers et al PRL 108 165006 (2012)
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QED Electron-Positron Pair Cascades
at ~ 10 W cm2
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Gamma-rays (blue), electrons & positrons (red)
at ~ 1022 W cm (record: at ~ 10°2 W cm™)
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= Experiments underway to measure non-
classical radiation losses to gamma-rays



Frontier 5). Absorption — the conversion of light
energy to matter energy — at the intensity frontier

Forb|dden

1.0
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e Absorption — the crucial first step in all high power laser interactions with matter —
therefore a fundamentally important topic

e Exhibits a theoretical minimum and maximum in petawatt-scale interactions’

e Such limits become particularly topical as the laser field increases towards the scale
of the Schwinger field

M. C. Levy et al. Nat. Commun. 5:4149 doi: 10.1038/ncomms5149 (2014)
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e Absorption — the crucial first step in all high power laser interactions with matter —
therefore a fundamentally important topic

e Exhibits a theoretical minimum and maximum in petawatt-scale interactions’

e Such limits become particularly topical as the laser field increases towards the scale
of the Schwinger field

M. C. Levy et al. Nat. Commun. 5:4149 doi: 10.1038/ncomms5149 (2014)



Frontier 5). Absorption — the conversion of light
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e Absorption — the crucial first step in all high power laser interactions with matter —
therefore a fundamentally important topic

e Exhibits a theoretical minimum and maximum in petawatt-scale interactions’

e Such limits become particularly topical as the laser field increases towards the scale

of the Schwinger field

e Potential to use high intensity lasers to inform limits on light power in the universe

M. C. Levy et al. Nat. Commun. 5:4149 doi: 10.1038/ncomms5149 (2014)



Conclusions — High Intensity Laser Physics
Turbulence and Transport Panel, Session-4

e High intensity laser science offers great potential societal impacts
eFl has driven ~$500M existing infrastructure, facilities, simulation codes
e Scientific expertise & interest exist coincident with that level of investment
e Opens research frontiers along the 10 year path
1. Cheaper & higher power lasers — Compact plasma-based laser amplifiers
2. Novel schemes for high gain ICF — Auxiliary heating
3. Novel radiography sources — Hard X-ray radiation via resisitive e- guiding
4. Fundamental physics probes — X-ray scattering in accelerated frames

5. Absorption from the petawatt scale to the Schwinger scale — the most powerful light

sources on Earth today to the most extreme conditions in the universe
e Knowledge frontier exciting for the brightest young scientists

e Likely to yield spectacular results
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