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•Conclusions
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science exceeds >$420M
•$300M for ORION 

•$60M OMEGA EP 

•$50M NIF-ARC 

•$20M Jupiter Laser Facility 

•Simulation codes incl. PSC (kinetic / particle-

in-cell), LSP (PIC), EPOCH (PIC), OSIRIS 

(PIC), ZUMA (rad-hydro), FLASH (rad-hydro), 

and many more

•Advancing frontiers implies using resources

•Enormous leverage here since many 
of these resources are in place
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•Resistivity gradients 
guide and focus 
electrons into regions 
of high Z — “Magnetic 
switchyard”

•Scheme exhibits 
>25% coupling 
efficiency to fuel — 
substantial progress 
on this key issue
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Mitigating issue 2: We have developed novel CS 
methods to help understand “at birth” electron energies

•“Characterisation of Dynamical Physical 

Systems” 

•Method for understanding energy flow 

through complex physical systems 

•Simulations, high rep rate experiments, 

HED plasmas

M. C. Levy, UK Patent Application No. 1509636.5 (2015)

We are making progress on this key issue

•Connections to industry via innovations 
in high intensity laser-plasma science



Frontier beyond FI 1): Compact and affordable 
plasma-based laser amplifiers
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•Currently, the best results produce pulses of less than 1 TW, far from the 10 PW required. However, 
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theory lead: r. trines 

R. Trines, et al. (2010). Nat. Phys., 7(1), 87–92.

•To achieve >50kJ of petawatt laser energy, we are pursuing plasma-based Brillouin and Raman 
amplification schemes 

•Currently, the best results produce pulses of less than 1 TW, far from the 10 PW required. However, 
recent theoretical results indicate substantial improvements

Raman AmplificationBrillouin Amplification

•Opens a path to cheaper and higher power lasers at modest theoretical and experimental cost
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the low-adiabat ICF point design to achieve ignition 

•Crossing e- beams provide this auxiliary heating at 

shock convergence 

• Beam-beam interaction yields a broad spectrum 

of unstable modes in k-space 

•Careful analysis of full-scale 2D simulations using 

both AWE’s and RCUK’s supercomputers is on-going 

•Preliminary results are promising

Credit: N. Ratan

•Offers a novel path to high gain ICF
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•Electron guiding due to large B-fields present at step-like interfaces 

•Larmor radius for 1 MeV electrons, B~100 MG — r = 0.3um  

•Synchrotron critical frequency  ~ c γ3 / r — ħω ~ 24 eV 

•For 10 MeV electrons, B ~ 1 GG — ħω ~ 24 keV 

•Novel hard X-ray radiation sources for radiography

Curved Collimators 

Structured Collimators can also bend beams! 

Credit:  
A. Robinson (RAL)



Frontier 4): Gravity analogues using accelerated 
frames of reference
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•Electron acceleration in laser focal 

region at 1019 W/cm2 — a ~1022 g 

•Conditions mimick, by virtue of the 

equivalence principle, a non-Minkowski 

space-time 

•Modified electronic metric tensor 

manifests as a broadening of the 

Thomson scattered X-ray light1 

Frontier 4):  Laboratory probes of quantum 
mechanics in non-Minkowski space-time

•Potential fundamental physics 
probes based on high intensity lasers
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Frontier 5):  Next logical step in relativistic HED 
science is towards the intensity frontier

ELI scheduled to come 
online in next few years
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QED-PLASMAS (particle-in-cell simulation) 
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Frontier 5): QED electron-pair and gamma-ray 
creation play important roles at the intensity frontier

Bell, A., & Kirk, J. (2008).PRL, 101(20), 200403.

~ 1 

QED Electron-Positron Pair Cascades 
at ~ 1024 W cm-2

§Experiments underway to measure non-
classical radiation losses to gamma-rays



1M. C. Levy et al. Nat. Commun. 5:4149 doi: 10.1038/ncomms5149 (2014)

Schwinger, Phys. Rev. (1951)

•Absorption — the crucial first step in all high power laser interactions with matter — 
therefore a fundamentally important topic 

•Exhibits a theoretical minimum and maximum in petawatt-scale interactions1 

•Such limits become particularly topical as the laser field increases towards the scale 
of the Schwinger field

Frontier 5):  Absorption — the conversion of light 
energy to matter energy — at the intensity frontier
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•Absorption — the crucial first step in all high power laser interactions with matter — 
therefore a fundamentally important topic 

•Exhibits a theoretical minimum and maximum in petawatt-scale interactions1 

•Such limits become particularly topical as the laser field increases towards the scale 
of the Schwinger field

•Potential to use high intensity lasers to inform limits on light power in the universe

Frontier 5):  Absorption — the conversion of light 
energy to matter energy — at the intensity frontier



Conclusions — High Intensity Laser Physics  
Turbulence and Transport Panel, Session-4
•High intensity laser science offers great potential societal impacts 

•FI has driven ~$500M existing infrastructure, facilities, simulation codes 

•Scientific expertise & interest exist coincident with that level of investment 

•Opens research frontiers along the 10 year path 

1. Cheaper & higher power lasers — Compact plasma-based laser amplifiers 

2. Novel schemes for high gain ICF — Auxiliary heating 

3. Novel radiography sources — Hard X-ray radiation via resisitive e- guiding 

4. Fundamental physics probes — X-ray scattering in accelerated frames 

5. Absorption from the petawatt scale to the Schwinger scale – the most powerful light 

sources on Earth today to the most extreme conditions in the universe 

•Knowledge frontier exciting for the brightest young scientists  

•Likely to yield spectacular results
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