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Studying the physics of instabilities and mix at the  

fill-gas/wall-blowoff interface in ICF experiments



MIT

Time-gated proton radiography reveals the structures 

and dynamics of material interface

Summary

• Dynamics at material interface are of fundamental importance in ICF

‒ Unstable interface  the interpenetration of the two materials

‒ Kinetic ion diffusion  an ambipolar E field and mix

• Charged-particle radiography with spatial resolution ~30 μm and

temporal resolution ~ 100 ps, could resolve ion diffusion, instability

and mixing at the interface

• In a broader view, these studies provide physical insight into kinetic

effects at material interfaces in other systems, such as HED and

Astrophysical plasmas
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Interfaces are present in hohlraum and capsule 
of a typical indirect-drive ICF target
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Interfaces are hydrodynamically unstable during laser-plasma 

interactions and ICF implosions, and are affected by fields 

RT ? 
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C. K. Li et al,  Phys. Rev. Letts. 100, 225001 (2008)



Scaled laboratory experiments provide physical insight into     

interface dynamics in core-collapse supernovas 
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R ~ 3 x 1012 cm
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Charged-particles provide direct measurements of fields    

and instabilities in ICF experiments
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Spatial resolution:     ~ 40 mm (FWHM)

Energy resolution:     ~ 3%

Temporal resolution: ~ 80 ps

Source
D + 3He  4He + p (14.7 MeV)

D +  D   T   + p (3.0 MeV)
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Proton images reveal the structure and dynamics of current 

filaments, plasma flow and spontaneous fields at LEHs



Interpenetration occurs due to the classical Rayleigh-

Taylor instability as the lighter, decelerating ionized fill gas 

pushes against the heavier, expanding gold wall blow-off 

Rayleigh-Taylor growth 
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The consequence is a reduced benefit of the gas fill

because the enhanced interpenetration (or mixing)

between the Au blow-off and the gas plasma leads to

high-Z material stagnating earlier in the hohlraum interior

C. K. Li et al,  Phys. Rev. Letts. 108, 025001 (2012)



Simulations suggest two E-fields are present which        

are associated with (1) the laser hitting wall                       

(2) the diffusion interface.
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S.C. Wilks et al,  to be submitter (2015)



Recent simulations reproduce OMEGA experiments 

remarkably well, providing physical insight into the kinetic 

effects at Au/gas interfaces
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A new experiment has been designed to break the E/B 

degeneracy and obtain quantitative information of the 

diffusive mix
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S.C. Wilks et al,  to be submitter (2015)



New experiments are being planned for backlighting 

the ViewFactor indirect-drive implosions at the NIF
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Growth of Rayleigh Taylor instabilities:

For OMEGA experiment, after 1 ns the amplitude has

a growth ~ 15. Using the same conditions for NIF,

imply a very huge amplitude growth after 22 ns.



The MIT-HEDP Accelerator Facility 

is used for HED diagnostics development 
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D + D → t (1.01 MeV) + p (3.02 MeV)

D + 3He → 4He (3.71 MeV)  + p (14.63 MeV)
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‒ Unstable interface  the interpenetration of the two materials

‒ Kinetic ion diffusion  an ambipolar E field and mix

• Charged-particle radiography with spatial resolution ~30 μm and

temporal resolution ~ 100 ps, could resolve ion diffusion, instability

and mixing at the interface

• In a broader view, these studies provide physical insight into kinetic

effects at material interfaces in other systems, such as HED and

Astrophysical plasmas


