Jupyter at NERSC

Redefining the Interface to HPC

Rollin Thomas Data and Analytics Services

NERSC User Group Meeting Rockville MD • 2019-07-19

Tool for reproducible, shareable narratives, literate computing: Notebook: Document containing code, comments, outputs. Rich text, interactive plots, equations, widgets, etc.

Goal: Enable exploratory data analytics, deep learning, workflows, and more through Jupyter on NERSC systems.

Why Jupyter, Why Now at NERSC?

Data 8: Foundations of Data Science, Fall 2018, Zellerbach Hall

Integral part of Big (Data) Science & Superfacility: LSST-DESC, DESI, ALS, LCLS, Materials Project NCEM, LUX/LZ, KBase...

Generational shift in analytics for science + more:

UCB's Data Science 8 course, entirely in Jupyter "I'll send you a copy of my notebook" Training events adopting notebooks (DL)

Supporting reproducibility and science outreach:

Open source code and open source science Jupyter notebooks alongside publications (LIGO)

> H1 whitened data around event H1 whitened h(t) H1 whitened h(t)

2017 ACM Software System Award: "... a de facto standard for data analysis in research, education, journalism and industry. Jupyter has broad impact across domains and use cases. Today more than 2,000,000 Jupyter notebooks are on *GitHub*, each a distinct instance of a Jupyter application—covering a range of uses from technical documentation to course materials, books and academic publications."

Jupyter at NERSC Timeline

U.S. DEPARTMENT OF Office of * IPython became Jupyter, de-emphasizing the Python branding. ENERGY Science Jupyter is language-agnostic.

Use Case	Where	Why
Light-weight data analysis and visualization	Spin Container (In production now.)	Usable when other systems are down. Simple, interactive access
Workflow execution and medium-scale data analysis	Cori "Login" Nodes (In production now.)	Access to batch and scratch Larger memory shared node
Heavy weight computation including task frameworks	Cori Compute Nodes (In testing now.)	Dedicated resources (e.g. memory and cores). Ability to launch parallel workloads in the notebook.

Jupyter @ NERSC Architecture

Jupyter Matters to NERSC Users

Users appreciate Jupyter @ NERSC...

"I really like the jupyter interface."

"New jupyter notebooks are awesome!"

"Great interactive workflow (e.g. for postprocessing) via JupyterHub"

"As mentioned, the ability to access data from the scratch directories through the Jupyter hub is very important to my workflow. The Jupyter hub has been running more and more consistently, but it still seems to lag or stall sometimes. I guess *my only thought on how to improve (currently)* would be to improve the stability of the Jupyter hub." [Venkitesh: "... jupyter notebooks are very important for me: *The 3 most important things in life: food, shelter and jupyter... everything else is optional.*"]

"I absolutely love the fact that I can use the Jupyter hub to access the Cori scratch directory. This allows me to analyze data through the browser ... or to quickly check that simulation runs are going as expected without having to transfer data to a different location. I actually also have access to other supercomputer clusters, but this is one of the biggest reasons I mainly use Cori and Edison for debugging and production runs."

...but need increased stability and to scale up.

"I would really appreciate it if jupyter.nersc.gov wouldn't go down as much as it does."

(2017 User Survey)

"MPI cannot be used in jupyter notebook as well, where the jupyter hubs run on login nodes (unless when using the compute nodes through SLURM.)"

Jupyter on Cori Usage Numbers

Deployment Schedule

BERKELEY LA

Deployment Schedule

Science

NERSO

Deployment Schedule

Configurable jobs:

Reservation (for training/tutorials/workshops) Full shifter image support

Integration with NERSC SSO

Jupyter Slurm integration Parameterized notebooks Managing curated notebooks

Workshop: Jupyter for Science User Facilities and **High Performance Computing**

Joint Workshop w/BIDS: June 11-12 at NERSC, June 13 at BIDS

Committee: Rollin Thomas • Shane Canon • Shreyas Cholia • Kelly Rowland Debbie Bard • Dan Allan (BNL) • Chris Holdgraf (BIDS)

Part of "Jupyter Community Workshop" Series

Competitive application process • Granted up to \$20K for travel support Funds from Bloomberg, managed by NumFOCUS and Project Jupyter

User Facilities, HPC & Data Centers Represented

NSLS-II • LSST • APS • SLAC • JGI • ARM • European XFEL NERSC • ALCF • TACC • MSI (@UMN) • Compute Canada • ESA

Content

Talks: Deployment • Infrastructure • Extending Jupyter for HPC • Use Cases Breakouts: Organizing Collaboration • Securing Jupyter • Sharing Notebooks Reproducibility • Best Practices • Future Plans • Tutorials **Roundtable Meeting with Core Jupyter Developers**

Office of Science

SLAC ANL 4.3% 13.0% 3 ORNL 3 13.0% BNL LLNL 17.4% 3 13.0% LANL 4.3% LBNL 34.8% 7 DOE Labs

DOE Lab Representation

Demo Intro

NCEM Superfacility Highlight Slide

Slide Courtesy Matt Henderson and Shreyas Cholia (LBL CRD)

Scientific Achievement

Enable interactive human-in the loop computing for Superfacility Workflows at NERSC

Significance and Impact

Superfacility Projects like ALS and NCEM need a flexible interactive user interface to be able to analyze data from experiments in real time. We use Jupyter Notebooks to enable these projects to combine live code execution, reproducibility, interactive visualizations on HPC resources.

Research Details

- Command and control center for integrating distributed workflows under a common platform
- Enable HPC Tools to allow Jupyter notebooks to execute code in parallel on distributed backend resources using Dask/IPyParallel/MPI
- Realtime rendering of results rendered inline in Jupyter to enable live interaction, visualization and job steering
- Parameterized notebooks can to execute a workflow over multiple datasets and parameters.
- Enable reproducible workflows through project curated notebooks that can be cloned / executed

RERKELEY L

Ne:SC

Find Bragg disks in all diffraction patterns

In [5]: ######## Parameters ########

corrPower = 0.8

sigma = 2edgeBoundary = 20 maxNumPeaks = 70 minPeakSpacing = 50 minRelativeIntensity = 0.001 subpixel = True verbose = True ******* braggpeaks = find Bragg disks(dc, probe kernel, corrPower=corrPower. sigma=sigma. edgeBoundary=edgeBoundary, minRelativeIntensity=minRelativeIntensity, minPeakSpacing=minPeakSpacing, maxNumPeaks=maxNumPeaks subpixel=subpixel, verbose=verbose) braggpeaks.name = 'braggpeaks

In [6]: # Show results for a few DPs
xs=(10,31,18)
ys=(45,31,10)

n/py4DSTEM/blob

Rollin Thomas

Shane Canon

Kelly Rowland

Trevor Slaton

Shreyas Cholia U.S. DEPARTMENT OF Office of

Science

Matt Henderson

William Krinsman

Jon Hays

Demo

Future Work

- More HPC-centric extensions and fixes to JupyterLab/Hub.
- Engagement with Jupyter and Jupyter-in-HPC communities
- User engagements through Superfacility and beyond: NCEM, ALS, DESI, LSST, ...

- Streamline notebook ↔ running job interaction
- Exclusive node access (notebook on compute) in real-time-like queue
- Experiment with configurable-http-proxy for dynamic routing (not SDN)
- Support >300 users/day, maybe add 1-2 more shared nodes, manage via Slurm
- Deploy Jupyter solutions at NERSC:
 - Sharing notebooks, parameterized notebooks, curated notebooks
 - Voila and dashboards

Thank You

How It Works

The **Notebook Server** sends code (via **ZeroMQ**) to a language "**kernel**" that executes this code. In addition to running your code, it stores code and output, together with markdown notes, in an editable document called a **notebook**, saved as a **JSON** file with a **.ipynb extension**.

JupyterHub: Jupyter as a Service

• Service to deploy notebooks in a multi-user environment

U.S. DEPARTMENT OF

Office of

Science

Manages user authentication, notebook deployment and web proxies

JupyterHub Architecture

Components are abstracted:

Authenticator Spawner Proxy

Pieces we've created:

GSIAuthenticator (IT IS NO MORE) SSHAPIAuthenticator

SSHSpawner (*Had* gsissh support) NERSCSpawner NERSCSlurmSpawner

Pieces we re-use and love:

WrapSpawner (NERSCSpawner) BatchSpawner (NERSCSlurmSpawner)

JupyterLab: Notebooks++

Modern Frontend for Jupyter

Science

- Integrated GUI for Jupyter ecosystem (filebrowser, tabbed panes, notebooks, terminal etc.)
- Common framework to integrate multiple applications "extensions"
- eg. connect multiple viewers to common underlying kernel

Extensions for many users? Right now we manage them all.

... we've made a Slurm one I'll show later.

Handling Spawner Options

🗢 🗢 🔵 🔵 JupyterHub	× +	
\leftarrow \rightarrow C \cong https://	upyter-test.nersc.gov/hub/spawn/rthomas/cori-configurable-any	☆ ▣ ♀ ⊖ :
💭 Jupyter Home	Token Admin	rthomas 🕞 Logout
	Spawner Options	
	dasrepo	\$
	Nodes:	
	3	
Populated by	Time Limit:	
queries against	240	
internal REST API's	QOS:	
	regular	\$
at NERSC	Constraint:	
(or example ones)	haswell	\$
	Reservation:	
	DisCoHackathon2	\$
	Shifter Image:	
	registry.services.nersc.gov/rthomas/shifter-jupyterlab:latest	\$
	Spawn	

Jupyter architecture

- Allocate nodes on Cori interactive queue and start ipyparallel or Dask cluster
 - Developed %ipcluster magic to setup within notebook
- Compute nodes traditionally do not have external address
 - Required network configuration / policy decisions
- Distributed training communication is via MPL Horovod or Crav ML

Via Magic (entire workflow in notebook) or a console script

```
In [1]: import ipcluster_magics
In [2]: job_name = "isc_ihpc_mnist"
nodes = 1
engines = 1
module = "python/3.6-anaconda-4.4"
conda_env = "/global/cscratch1/sd/sfarrell/conda/isc-ihpc"
In [3]: %ipcluster -m $module -e $conda_env -N $nodes -J $job_name -t 01:00:00
salloc: Pending job allocation 13289619
salloc: job 13289619 queued and waiting for resources
```

2018-06-21 15:55:55.813 [scheduler] Scheduler started [leastload]

Use a unique cluster ID for this job clusterID=cori_\${SLURM_JOB_ID} echo "Launching controller" ipcontroller --ip="\$headIP" \ --cluster-id=\$clusterID & sleep 20 echo "Launching engines" srun ipengine --cluster-id=\$clusterID

salloc -- qos=interactive -N 1 -C haswell

wbhimji@nid00032:~> ./startCluster.sh

Connect to cluster in notebook

salloc: Granted job allocation 13289619

salloc: job 13289619 has been allocated resources

U.S. DEPARTMENT OF Office of Science

```
In [7]: # Cluster ID taken from job ID above
    job_id = 13272466
    cluster_id = 'cori_{}'.format(job_id)
```

```
# Use default profile
c = ipp.Client(timeout=60, cluster_id=cluster_id)
```


Distributed Training

- Distributed training in notebooks with IPyParallel and Horovod-MPI
- Notebook cells specified for parallel execution using cell magic
 - MPI code in a notebook
- Scales well with no noticeable Distributed training scaling overhead from the statch 120000 infrastructure 100000

Parallel notebook cell 88px # Model config h1, h2, h3, h4, h5 = 64, 128, 256, 256, 512 optimizer = 'Adam' lr = 0.001 * hvd.size()# Training config batch size = 128 model = build model(train input.shape[1:], optimizer=optimizer, lr=lr, use horovod=True)

n epochs = 4

In [8]:

Build the model

Build and train the model

on every worker h1=h1, h2=h2, h3=h3, h4=h4, h5=h5, if hvd.rank() == 0:

model.summary()

[stdout:1]

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	(None, 64, 64, 1)	0
conv2d_5 (Conv2D)	(None, 64, 64, 64)	640
conv2d_6 (Conv2D)	(None, 32, 32, 128)	73856
conv2d_7 (Conv2D)	(None, 32, 32, 256)	295168
conv2d_8 (Conv2D)	(None, 16, 16, 256)	590080
flatten_2 (Flatten)	(None, 65536)	0
dense_3 (Dense)	(None, 512)	33554944
dense 4 (Dense)	(None, 1)	513

Total params: 34,515,201 Trainable params: 34,515,201 Non-trainable params: 0

88px

Train with Horovod on all workers

Train the model

history = train model(model, train input=train input, train labels=train labels, valid input=valid input, valid labels=valid labels, batch size=batch size, n epochs=n epochs, use horovod=True)

[stdout:0]

Train on 64000 samples, validate on 32000 samples

Distributed HPO - Setup

Easy but powerful setup for random search HPO

- Define HP sets to evaluate
- Define model training function
- Run the HPO tasks with load-balanced scheduler

Launch user-defined training function and arguments

AsyncResult objects can be queried for status, outputs # Define the hyper-parameter search points n_hpo_trials = 336 h1 = np.random.choice([4, 8, 16, 32, 64], size=n_hpo_trials) h2 = np.random.choice([4, 8, 16, 32, 64], size=n_hpo_trials) h3 = np.random.choice([8, 16, 32, 64, 128], size=n_hpo_trials) conv_sizes = np.stack([h1, h2, h3], axis=1) fc_sizes = np.random.choice([32, 64, 128, 256], size=(n_hpo_trials, 1)) lr = np.random.choice([0.0001, 0.001, 0.01], size=n_hpo_trials) dropout = np.random.rand(n_hpo_trials) optimizer = np.random.choice(['Adadelta', 'Adam', 'Nadam'], size=n_hpo_trials)

Hyperparameter trial 0 conv [64 16 128] fc [128] dropout 0.3234 opt Nadam, lr 0.0100 Hyperparameter trial 1 conv [4 8 64] fc [64] dropout 0.6747 opt Adadelta, lr 0.0010

Plots update live Table shows different configurations:

- Status
- Current loss and accuracy
- Sort

Can add further quantities to plot and interaction buttons

https://github.com/sparticle steve/cori-intml-examples/

Curated Notebook Environments

- Browse curated examples managed by project using tools like nbviewer
- Clone and launch notebook into users workspace with appropriate conda environment
- Reproducible Notebooks Similar to Binder

Office of Science

		(←) → / / () 🖨 https://jupyter.nersc.gov/user/shreyas/cori-shared-node-cpu/lab
a una star		🛠 Most Visited M LBL Mail & My Drive - Google D 🔯 Berkeley Lab (Univ
🔁 Jupyter		💭 File Edit View Run Kernel Hub Tabs Settings Help
nbviewer		+ 🗈 ± C 🗈 Terminal 1 X 🖻 dataobjects.ipynb •
Institute and the second se		A > > notebooks > basic_demos B + % □ □ + ■ C Markdown ×
py4DSTEM / py4DSTEM / notebooks / basic_demos	View	Name - Last Modified Gatadobjects/pythe seconds ago Thehanding_nativefile seconds ago
Name		Fifehanding,non-nativ seconds ago Imetadatajpynb seconds ago 1. The DataObjects
	nbviewer	2. Searching DataObjects
	datacube.set_scan_shape(10,10)	3. Saving DataObjects
🗐 dataobjects.ipynb	In [3] / And now the data hape looks more reasonable/ print(datacube.data10.akape) print(datacube.data10.akape) print(datacube.data10.akape)	<pre>(1): import numpy as np import metpotlin.pyplot as plt import pu03TBM</pre>
Jilehandling_nativefiles.ipynb	(10, 10, 512, 512) 10 10 512 512	
Inenanding_nativenies.pynb	In (10): # Basic processing and display	
filehandling_non-nativefiles.ipynb	<pre># Got an average image: at each real-appce scan position, add up all the counts in the a # pattern; (i.e. a bright field image vibb a large integrating detector) ave_im = np.sum(datacube.data40,axis=(2,3))</pre>	Part 1: The DataObjects In py4DSTEM there are several classes which contain distinct types of data,
metadata.ipynb	# Gut a single diffraction pattern from a particular beam position DP = datacube.data40[5,5;;] # Display	basic classes discussed here are: 1. DataCube
	fig $(ax1, ax2)$ =pl=.aubplots $(1, 2, figsize=(12, 6))$ ax1.natshow(awe in, cmap-'cray')	2. DiffactionSlice
	<pre>ax2.matshow(DP**0.2,cmap='gray') plt.show()</pre>	3. RealSlice
		4. PointList 5. PointListArray
Browse	0	[2]: # Import the DataObject classes
Blowse		<pre>from py4DSTEM.file.datastructure import DataCube from py4DSTEM.file.datastructure import DiffractionSlice, RealS from py4DSTEM.file.datastructure import PointList, PointListArr</pre>
		Launch

Parameterized Notebooks

- Run the same notebook against
 - different sets of parameters
 - Different datasets
 - Think "data parallel"
- Running as notebook gives you a live document of each task
- Save successful runs

Executing a Notebook

The two ways to execute the notebook with parameters are: (1) through the Python API and (2) through the comr interface.

Execute via the Python API

import papermill as pm
pm.execute_notebook(
 'path/to/input.ipynb',
 'path/to/output.ipynb',
 parameters = dict(alpha=0.6, ratio=0.1)
)

Jupyterlab Extensions

- SLURM Extension
- Resource Usage Monitoring Extension

	BEARCH	Q	🔣 Slurm Queue Manager	×							
	CONSOLE	1	Reload Kill Select	ed Job(s) Hold	Selected Job(s)	Release	Selected	Job(s)	Deselect all	Search:	
ŧ	Change Kernel										
Þ	Clear Console Cells		JOBID	PARTITION	NAME 🔅	USER 🔅	ST 🗄	TIME	NODES 🔅	NODELIST(REASON)	÷
-	Close and Shutdown		10923303	regular	7zz_chev	fzzhao	PD	0:00	8	(JobHeldUser)	
-	Insert Line Break		10923311	regular	shortuni	fzzhao	PD		8	(JobHeldUser)	
	Interrupt Kernel										
	New Console		10923436	regular	7zzsynth	fzzhao	PD	0:00	8	(JobHeldUser)	
	Restart Kernel		11062030	regular	shortuni	fzzhao	PD	0:00	10	(JobHeldUser)	
	Run Cell (forced)		11177376	regular	REG_D	mwu	PD	0:00	60	(JobHeldUser)	
	Run Cell (unforced)		4470070		050 0 711			0.00	64	(10)1000	
	Show All Kernel Activity		11476878	regular	REG_C_TH	mwu	PD	0:00	64	(JobHeldUser)	
	FILE OPERATIONS		11495724	regular	REG_I_TH	mwu	PD	0:00	64	(JobHeldUser)	
	✓Autosave Documents		13388219	regular	REG_R_TH	mwu	PD	0:00	64	(JobHeldUser)	
	Close All		13388711	regular	Ndpd_k5	fzzhao	PD		16	(JobHeldUser)	
	Close Other Tabs										
	Close Slurm Queue Manager	^ Q	13388712	regular	Ndpd_k6	fzzhao	PD	0:00	16	(JobHeldUser)	
	Close Tabs to Right New View for		13388715	regular	Ndpd_k7	fzzhao	PD	0:00	16	(JobHeldUser)	
	Open From Path										
	Reload from Disk		Show 🔷 entries								
	Revert to Checkpoint		Showing 1 to 15 of 18,	631 entries 1	row selected					Previous 1 2 3 4 5 1243	3 Next
	Save	96 S									
	Save As	0 # S	Show my jobs	oniy							
	HELP										
	JupyterLab Reference										
	Launch Classic Notebook										
	Markdown Reference										
	Notebook Reference										

