
NESAP code optimizations for
ab initio nuclear structure calculations

Pieter Maris

Dept. of Physics and Astronomy
Iowa State University

Ames, IA 50011

Nersc User Group meeting, July 2019, Rockville MD

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 1 / 27

Ab Initio Nuclear Structure

Ab initio nuclear strucuture calculations
Given a Hamiltonian operator

Ĥ =
∑
i<j

(~pi − ~pj)
2

2 m A
+

∑
i<j

Vij +
∑

i<j<k

Vijk + . . .

solve the eigenvalue problem for wave function of A nucleons
Ĥ Ψ(r1, . . . , rA) = λΨ(r1, . . . , rA)

I Eigenvalues λ discrete (quantized) energy levels
I total energies: EΨ = 〈Ψ|Ĥ|Ψ〉 = −Ebinding

Ψ
I excitation energies: Eexc = EΨ − Egs

I Eigenvectors: representation of A-body wave function
Challenges
I Self-bound quantum many-body problem,

with 3A degrees of freedom in coordinate (or momentum) space
I Not only 2-body interactions, but also intrinsic 3-body interactions

and possibly 4- and higher N-body interactions
I Strong interactions, with both short-range and long-range pieces

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 2 / 27

Ab Initio Nuclear Structure

No-Core Configuration Interaction approach

Barrett, Navrátil, Vary, Ab initio no-core shell model, PPNP69, 131 (2013)

I Expand wavefunction in basis states |Ψ〉 =
∑

ai |Φi〉
I Express Hamiltonian in basis 〈Φj |Ĥ|Φi〉 = Hij
I Diagonalize Hamiltonian matrix Hij
I No-Core: all A nucleons are treated the same
I Complete basis −→ exact result

I caveat: complete basis is infinite dimensional

I In practice
I truncate basis
I study behavior of observables as function of truncation

I Computational challenge
I construct large (1010 × 1010) sparse symmetric matrix Hij
I obtain lowest eigenvalues & -vectors corresponding to low-lying

spectrum and eigenstates

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 3 / 27

Ab Initio Nuclear Structure

Convergence

I Variational: for any finite truncation of the basis space,
eigenvalue is an upper bound for the ground state energy

I Smooth approach to asymptotic value with increasing basis space
I Convergence: independence of both Nmax and H.O. basis ~ω

I different methods using the same interaction should give same
results within (statistical plus systematic) numerical uncertainties

20 40 80
hω (MeV)

-50

-40

-30

-20

-10

0

Jπ

=
 0

+
 (

g
ro

u
n
d
 s

ta
te

)
en

er
g
y
 (

M
eV

)

20 40 80
hω (MeV)

20 40 80
hω (MeV)

20 40 80
hω (MeV)

20 40 80
hω (MeV)

N
max

= 2

N
max

= 10

N
max

= 20

Yakubovsky calc’ns (Nogga)

4
He

N
2
LONLO

LO

N
3
LO N

4
LO

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 4 / 27

Ab Initio Nuclear Structure

Computational Challenge

0 2 4 6 8 10 12 14 16 18

N
max

10
0

10
2

10
4

10
6

10
8

10
10

M
-s

c
h

e
m

e
 d

im
e
n

s
io

n

6
Li

8
Be

10
B

12
C

14
N

16
O

18
F

20
Ne

10
4

10
5

10
6

10
7

10
8

10
9

10
10

matrix dimension

10
6

10
8

10
10

10
12

10
14

n
u
m

b
er

 o
f

n
o
n
ze

ro
 m

at
ri

x
 e

le
m

en
ts

6
Li

8
Be

10
B

12
C

14
N

16
O

18
F

20
Ne

 2-body
potentials

 3-body
potentials

I Increase of basis space dimension with increasing A and Nmax
I need calculations up to at least Nmax = 8, preferably Nmax = 10

for meaningful extrapolation and numerical error estimates
I More relevant measure for computational needs

I number of nonzero matrix elements
I current limit 1014 (Cori, Theta)

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 5 / 27

MFDn

Many-Fermion Dynamics for nuclear structure

MFDn: No-Core Configuration Interaction code
for nuclear structure calculations

I Fortran legacy code
I initial version dates back to early 90s (F77)
I distributed memory parallel code using MPI
I in use as production code at NERSC since early 2000s
I since late 2000s also used at OLCF and ALCF

I Ongoing algorithm development and code optimization
for current and next-generation HPC platforms
I SciDAC-2 (UNEDF), SciDAC-3, SciDAC-4 (NUCLEI)
I Jaguar Early Science, NESAP-KNL, NESAP-Perlmutter

I Hybrid OpenMP / MPI, Fortran 90 – 2003
I construct many-body matrix Hij from input TBMEs (plus 3NFs)
I obtain lowest eigenpairs using LOBPCG or Lanczos algorithm
I use eigenvectors to calculate observables

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 6 / 27

MFDn

Distributed symmetric matrix

I Matrix is symmetric, so we only need half the matrix
I Load-balancing

I 2-dimensional distribution of matrix over MPI ranks
I local load determined by number of nonzero matrix elements
I can be achieved by even distribution of many-body (n, l , j) orbitals

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 7 / 27

MFDn

Jaguar Early Science Project (2008-2009)

I Cray XT5 Jaguar at OLCF
I 14C to 14N β-decay with chiral EFT NN + 3NF

P. Maris, J.P. Vary, P. Navratil, W.E. Ormand, H. Nam, and D.J. Dean, Origin of the anomalous long lifetime of 14C,
Phys. Rev. Lett. 106, 202502 (2011)

I First hybrid OpenMP / MPI version of MFDn

0 1 2 3 4
number of threads (on Franklin, Cray XT4)

0

1

2

3

4

sp
ee

du
p

Ideal speedup
Construct sparse matrix
Lanczos iterations
Evaluation of observables
Total time

0 2 4 6 8 10 12
number of threads (on 120 nodes on Jaguar, Cray XT5)

0

2

4

6

8

sp
ee

du
p

Ideal speedup
Construct sparse matrix
Lanczos iterations
Evaluation of observables
Total time

P. Maris, M. Sosonkina, J.P. Vary, E.G. Ng, C Yang, Scaling of ab-initio nuclear physics calculations on
multicore computer architectures, Procedia Computer Science 1, 97 (ICCS 2010)

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 8 / 27

MFDn

Symmetric SpMV & SpMVT

MFDn is memory bound, so we store only half of the symmetric matrix,
and perform SpMV and SpMVT with the same data structures
I Compressed sparse row (CSR)

I need private output vectors for SpMVT to avoid race conditions
I prohibitively expensive on many-core architectures

I Compressed sparse block (CSB)
I improves data locality and cache performance
I allows for efficient OpenMP parallelization for SpMV and SpMVT 9

0
10
20
30
40
50
60
70
80
90

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
CSR/OpenMP

0
10
20
30
40
50
60
70
80
90

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
rowpart/OpenMP
CSR/OpenMP

Fig. 5: Optimization
benefits on Edison us-
ing the Nm6 matrix
for SpMM (top) and
SpMMT (bottom) as
a function of m (the
number of vectors).

the benefit of CSB variants’ blocking on cache locality is
manifested. The CSB/OpenMP version delivers notice-
ably better performance than the CSB/Cilk implemen-
tation. This may be due in part to performance issues
associated with Cray’s cluster compatibility mode, but
most likely due to additional parallelization overheads of
the Cilk version that uses temporary vectors to introduce
parallelism at the block row and block computation
levels. This additional level of parallelism is eliminated
in CSB/OpenMP by noting that the work associated with
each nonzero is significantly increased as m increases,
and we leverage the large dimensionality of input vec-
tors for load balancing among threads. Ultimately, we
observe that CSB/OpenMP’s performance saturates at
around 65 GFlop/s for m > 16. This represents a roughly
45% increase in performance over CSR, and 20% increase
over CSB/Cilk.

CSB truly shines when performing SpMMT . The abil-
ity to efficiently thread the computation coupled with
improvements in locality allows CSB/OpenMP to re-
alize a 35% speedup for SpMV over CSR and nearly
a 4× improvement in SpMM for m ≥ 16. The row
partitioning scheme has only a minor benefit and only
at very large m. Moreover, CSB ensures SpMM and
SpMMT performance are now comparable (67 GFlop/s
vs 62 GFlop/s with OpenMP) — a clear requirement as
both computations are required for MFDn.

As an important note, we point out that the increase
in arithmetic intensity introduced by SpMM allows for
more than 5× increase in performance over SpMV.
This should be an inspiration to explore algorithms
that transform numerical methods from being memory
bandwidth-bound (SpMV) to compute-bound (SpMM).

5.2.2 Tuning for the Optimal Value of β

As discussed previously, we wish to maintain a working
set for the X and Y blocks of vectors as close to the
processor as possible in the memory hierarchy. Each β×β
block demands a working set of size βm in the L2 for

0
5

10
15
20
25
30
35
40
45
50

1 4 8 12 16 24 32 48 64 80 96

G
Fl

op
/s

#vectors (m)

B=6K
B=4K
B=2K

Fig. 6: Performance
benefit on the
combined SpMM
and SpMMT

operation from
tuning the value
of β for the Nm8
matrix.

X and Y . Thus, as m increases, we are motivated to
decrease β. Fig. 6 plots performance of the combined
SpMM and SpMMT operation using CSB/OpenMP on
the Nm8 matrix as a function of m for varying β.
For small m, there is either sufficient cache capacity to
maintain locality on the block of vectors, or the other per-
formance bottlenecks are pronounced enough to mask
any capacity misses. However, for large m (we show
up to m = 96 for illustrative purposes), we clearly see
that progressively smaller β are the superior choice as
they ensure a constrained resource (e.g., L3 bandwidth)
is not flooded with cache capacity miss traffic. Still,
note in Fig. 6 that no matter what β value is used, the
maximum performance obtained for m > 48 is lower
than the peak of 45 Gflops/s achieved for lower values
of m. This suggests that for large values of m, it may be
better to perform the SpMM and SpMMT computations
as batches of tasks with narrow vector blocks. In the
following sections, we always use the best value of β
for a given value of m.

5.2.3 Speedup for Combined SpMM/SpMMT Operation
Our ultimate goal is to include the LOBPCG algorithm
as an alternative eigensolver in MFDn. As discussed
earlier, the computation of both SpMM and SpMMT is
needed for this purpose. We are therefore interested in
the performance benefit for the larger (and presumably
more challenging) MFDn matrices. Fig. 7 presents the
combined performance of SpMM and SpMMT as a
function of m for our three test matrices. Clearly, the
CSB variants deliver extremely good performance for the
combined operation with the CSB/OpenMP delivering
the best performance. We observe that as one increases
the number of vectors m, performance increases to a
point at which it saturates. A naive understanding of
locality would suggest that regardless of matrix size, the
ultimate SpMM performance should be the same. How-
ever, as one moves to the larger and sparser matrices,
performance saturates at lower values. Understanding
these effects and providing possible remedies requires
introspection using our performance model.

5.2.4 Performance Analysis
Given the complex memory hierarchies of varying ca-
pacities and bandwidths in highly parallel processors,
the ultimate bottlenecks to performance can be extremely
non-intuitive and require performance modeling. In
Fig. 7, we provide three Roofline performance bounds
based on DRAM, L3, and L2 data movements and

9

0
10
20
30
40
50
60
70
80
90

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
CSR/OpenMP

0
10
20
30
40
50
60
70
80
90

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
rowpart/OpenMP
CSR/OpenMP

Fig. 5: Optimization
benefits on Edison us-
ing the Nm6 matrix
for SpMM (top) and
SpMMT (bottom) as
a function of m (the
number of vectors).

the benefit of CSB variants’ blocking on cache locality is
manifested. The CSB/OpenMP version delivers notice-
ably better performance than the CSB/Cilk implemen-
tation. This may be due in part to performance issues
associated with Cray’s cluster compatibility mode, but
most likely due to additional parallelization overheads of
the Cilk version that uses temporary vectors to introduce
parallelism at the block row and block computation
levels. This additional level of parallelism is eliminated
in CSB/OpenMP by noting that the work associated with
each nonzero is significantly increased as m increases,
and we leverage the large dimensionality of input vec-
tors for load balancing among threads. Ultimately, we
observe that CSB/OpenMP’s performance saturates at
around 65 GFlop/s for m > 16. This represents a roughly
45% increase in performance over CSR, and 20% increase
over CSB/Cilk.

CSB truly shines when performing SpMMT . The abil-
ity to efficiently thread the computation coupled with
improvements in locality allows CSB/OpenMP to re-
alize a 35% speedup for SpMV over CSR and nearly
a 4× improvement in SpMM for m ≥ 16. The row
partitioning scheme has only a minor benefit and only
at very large m. Moreover, CSB ensures SpMM and
SpMMT performance are now comparable (67 GFlop/s
vs 62 GFlop/s with OpenMP) — a clear requirement as
both computations are required for MFDn.

As an important note, we point out that the increase
in arithmetic intensity introduced by SpMM allows for
more than 5× increase in performance over SpMV.
This should be an inspiration to explore algorithms
that transform numerical methods from being memory
bandwidth-bound (SpMV) to compute-bound (SpMM).

5.2.2 Tuning for the Optimal Value of β

As discussed previously, we wish to maintain a working
set for the X and Y blocks of vectors as close to the
processor as possible in the memory hierarchy. Each β×β
block demands a working set of size βm in the L2 for

0
5

10
15
20
25
30
35
40
45
50

1 4 8 12 16 24 32 48 64 80 96

G
Fl

op
/s

#vectors (m)

B=6K
B=4K
B=2K

Fig. 6: Performance
benefit on the
combined SpMM
and SpMMT

operation from
tuning the value
of β for the Nm8
matrix.

X and Y . Thus, as m increases, we are motivated to
decrease β. Fig. 6 plots performance of the combined
SpMM and SpMMT operation using CSB/OpenMP on
the Nm8 matrix as a function of m for varying β.
For small m, there is either sufficient cache capacity to
maintain locality on the block of vectors, or the other per-
formance bottlenecks are pronounced enough to mask
any capacity misses. However, for large m (we show
up to m = 96 for illustrative purposes), we clearly see
that progressively smaller β are the superior choice as
they ensure a constrained resource (e.g., L3 bandwidth)
is not flooded with cache capacity miss traffic. Still,
note in Fig. 6 that no matter what β value is used, the
maximum performance obtained for m > 48 is lower
than the peak of 45 Gflops/s achieved for lower values
of m. This suggests that for large values of m, it may be
better to perform the SpMM and SpMMT computations
as batches of tasks with narrow vector blocks. In the
following sections, we always use the best value of β
for a given value of m.

5.2.3 Speedup for Combined SpMM/SpMMT Operation
Our ultimate goal is to include the LOBPCG algorithm
as an alternative eigensolver in MFDn. As discussed
earlier, the computation of both SpMM and SpMMT is
needed for this purpose. We are therefore interested in
the performance benefit for the larger (and presumably
more challenging) MFDn matrices. Fig. 7 presents the
combined performance of SpMM and SpMMT as a
function of m for our three test matrices. Clearly, the
CSB variants deliver extremely good performance for the
combined operation with the CSB/OpenMP delivering
the best performance. We observe that as one increases
the number of vectors m, performance increases to a
point at which it saturates. A naive understanding of
locality would suggest that regardless of matrix size, the
ultimate SpMM performance should be the same. How-
ever, as one moves to the larger and sparser matrices,
performance saturates at lower values. Understanding
these effects and providing possible remedies requires
introspection using our performance model.

5.2.4 Performance Analysis
Given the complex memory hierarchies of varying ca-
pacities and bandwidths in highly parallel processors,
the ultimate bottlenecks to performance can be extremely
non-intuitive and require performance modeling. In
Fig. 7, we provide three Roofline performance bounds
based on DRAM, L3, and L2 data movements and

Aktulga, Afibuzzaman, Williams, Buluç, Shao, Yang, Ng, Maris, Vary, IEEE Transactions on Parallel and Distributed Systems,
DOI 10.1109/TPDS.2016.2630699 (2016)

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 9 / 27

Algorithmic Improvements (2013 - 2016)

Lanczos Algorithm vs. LOBPCG solver

Locally Optimal Block Preconditioned Conjugate Gradient:
SpMV acting on block of vectors, which improves cache performance,
allows for vectorization, and, with a good preconditioner, needs
significantly less iterations compared to Lanczos algorithm

0 40 80 120 160
Lanczos or LOBPCG iteration n

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
rr

o
r

E
st

im
a
te

 R
n

5/2
-

5/2
-

7/2
-

1/2
-

3/2
-
, LOBPCG

3/2
-
, Lanczos

7
Li, JISP16

 N
max

= 12

Despite doing
approximately 1.6
times more work in
SpMV/SpMM,
LOBPCG factor of 2
faster than Lanczos
Shao, Aktulga, Yang, Ng, Maris, and Vary,
Comp. Phys. Comm. 222, 1 (2018)

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 10 / 27

MPI Communication (2012-2014)

Efficient distributed SpMV

I Communication needs to be
load-balanced as well

I Vectors distributed over all
processors for orthogonalization

P1,1

P2,1

P3,1

P2,2

P3,2

P4,2

P3,3

P4,3

P5,3

P4,4

P5,4

P1,4

P5,5

P1,5

P2,5

w1,1

w2,1

w3,1

w2,2

w3,2

w4,2

w3,3

w4,3

w5,3

w4,4

w5,4

w1,4

w5,5

w1,5

w2,5

w1

w2

w3

w4

w5

w1

w1

w1

w2

w2

w2

w3

w3

w3

w4

w4

w4

w5

w5

w5

w1

w2

w3

w2

w3

w4 w4

w3

w5

w4

w5

w1

w5

w1

w2

Ĥ1,1w1

Ĥ2,1w1

Ĥ3,1w1

Ĥ2,2w2

Ĥ3,2w2

Ĥ4,2w2

Ĥ3,3w3

Ĥ4,3w3

Ĥ5,3w3

Ĥ4,4w4

Ĥ5,4w4

Ĥ1,4w4

Ĥ5,5w5

Ĥ1,5w5

Ĥ2,5w5

ĤT
1,1w1

ĤT
2,1w2

ĤT
3,1w3

ĤT
2,2w2

ĤT
3,2w3

ĤT
4,2w4

ĤT
3,3w3

ĤT
4,3w4

ĤT
5,3w5

ĤT
4,4w4

ĤT
5,4w5

ĤT
1,4w1

ĤT
5,5w5

ĤT
1,5w1

ĤT
2,5w2

u1

u2

u3

u4

u5

u1,1

u2,1

u3,1

u2,2

u3,2

u4,2

u3,3

u4,3

u5,3

u4,4

u5,4

u1,4

u5,5

u1,5

u2,5

scatter

broadcast

(column) (row)

SpMV/SpMM

reduce
(row) (column)

scatter

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 11 / 27

MPI Communication (2012-2014)

Efficient distributed SpMV – MPI communication

Aktulga, Yang, Ng, PM, Vary, Concurr. Comput. 26 (2014), doi:10.1002/cpe.3129Communica&on	
 Hiding:	
 Main	
 Idea	

jvbroadcast

jijvA jijvA
jijvA

ivbcast

i
T
ij vA i

T
ij vA

i
T
ij vA

iw reduce

iw

jw

jw reduce

other nodes

other nodes

other nodes

other nodes

Performance	
 Results	

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

2000"

ver1" ver2" ver3" ver4" ver5" ver6"
Tim

e%(
in
%se

co
nd

s)%

%B10%Nmax=%10%%
dim%=%1.3%B%

Total%non8zeros%=%1.5%T%
18,960%cores%on%Hopper%

%
6.2x%speed8up%

All"Reduce"

Row"Comm"

Col"Comm"

SpMV+Ortho"

I Overlap communication with computation
I Optimize mapping onto network topology for non-overlapping

communication see also Oryspayev, PhD thesis 2016, ISU

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 12 / 27

NESAP for Cori-KNL (2016-2017)

Tuning single-node performance on KNL
I Single-node performace using MFDn proxy

I local workload of one node out of 5,000 nodes production run
I construction of local matrix with dimension of about 118 × 106

and 7.5 × 109 nonzero matrix elements
I local SpMV/SpMM and transpose SpMV/SpMM
I no communication, no orthonormalization, no ’LOBPCG magic’

I Explore MPI and OpenMP scaling within node
I near-perfect MPI and OMP scaling up to 64 (68) ranks × threads
I OMP shared memory within node minimizes memory footprint

I Optimize memory placement
I quad-flat with vectors in MCDRAM and matrix in DDR4 gives

best performance but gain is offset by extra reboot time
I Vectorization

I use compiler report to see which loops vectorize automatically
I use OpenMP4 SIMD directives for manual vectorization
I split complicated innerloops into smaller and simpler subloops

B. Cook, P. Maris, M. Shao, N. Wichmann, M. Wagner, J. O’Neill, T. Phung and G. Bansal,
High performance optimizations for nuclear physics code MFDn on KNL, LNCS 9945, 366 (2016)

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 13 / 27

NESAP for Cori-KNL (2016-2017)

Matrix sparsity structure

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

20 30 40 50 60 70 80 90 100 110

120

130

140

150

160

170

180

190

200

I A-body problem with a-body interaction: nonzero matrix elements
iff at least (A− a) particles are in identical single-particle states

I Nonzero tiles of varying size (dashed lines)
I Tiles are combined to form (approximately) square CSB blocks

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 14 / 27

NESAP for Cori-KNL (2016-2017)

Matrix construction

Compare pairs of many-body states to determine sparsity structure

I count nonzero tiles
I within nonzero tiles

count nonzero
matrix elements

Construct nonzero matrix element
I store in CSB format

(row, column, value)
using 16-bit integers
for row and column indices
within CSB block

Calculation of observables
after obtaining eigenvectors

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 15 / 27

NESAP for Cori-KNL (2016-2017)

Performance improvements matrix construction

I Intel compiler opimization report:
inner loops do not vectorize
I no vector instruction for fortran function popcnt
I subroutine MBstate difference contains lots of branching, cycle,

and early exit statements
I Without vectorization, performance is poor
I Strategy to improve performance

1. simplify MBstate difference from about 120 lines to 20 lines
I not dealing with exceptions, which increases work-load slightly
I remove cycle and early exits (may need to pad several arrays)
I naively, significantly larger work-load (more comparisons executed),

but in practice only slightly slower

2. split inner loop to improve cache performance
3. split inner loops into subloops of appropriate length for vectorization

presented at IXPUG 2016, Sept. 2016, Argonne IL

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 16 / 27

NESAP for Cori-KNL (2016-2017)

Improved matrix construction – performance

or
ig

in
al

 6
4

bi
t r

ep

si
m

pl
ifi

ed

im
pr

ov
ed

V
EC

LEN
 =

 1

 n
o

ve
ct

or
iz

at
io

n

V
EC

LEN
 =

 4

V
EC

LEN
 =

 8

V
EC

LEN
 =

 1
6

V
EC

LEN
 =

 3
2

V
EC

LEN
 =

 6
4

0

10

20

30

40

50

60

70

w
al

l
ti

m
e

(s
ec

o
n
d
s)

no Hyper Threading

2 Hyper Threads

4 Hyper Threads

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 17 / 27

NESAP for Cori-KNL (2016-2017)

Comparison Edison vs. Cori-Haswell vs. Cori-KNL

M
at

rix

co
nstr

uct
io

n

LO
BPCG

ite
ra

tio
ns

O
bse

rv
ab

le
s

0

1

2

3

n
o

d
e

h
o

u
rs

Edison, production June 2016

Edison, NESAP June 2017

Cori-HW, production June 2016

Cori-HW, NESAP June 2017

Cori-KNL, production 2016

Cori-KNL, NESAP June 2017 I dimension 252 million,
with 400 billion
nonzero matrix
elements

I 124 nodes on Edison
62 nodes on Cori
using 496 MPI ranks

I Tuning for KNL also improves performance Cori-HW and Edison

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 18 / 27

NESAP for Cori-KNL (2016-2017)

Single-node scaling on KNL (Cori, Theta)

1 4 16 64 256
Threads

100

1000

10000
W

al
l-

cl
o

ck
 t

im
e

(s
ec

o
n

d
s)

1 4 16 64 256
Threads

100

1000

10000
W

al
l-

cl
o

ck
 t

im
e

(s
ec

o
n

d
s)

Total, OMP only

Total, 15 MPI ranks

Matrix Construction
LOBPCG Solver
Observables
ideal scaling

I Good scaling up to number of cores available
on both Cori (open symbols) and Theta (closed symbols)

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 19 / 27

MPI communication (2019)

Communication issues

I Communication time fluctuates wildly between different runs
I depends on placement of job on hardware
I solution: restrict job to subset of available switches

I Useful to tune some of the many MPI settings
I most important: module load craype-hugepages2M

I One MPI rank per node: communication by only one core
I one core cannot saturate communication bandwidth
I MPI standard allows more threads to perform MPI communication

however, MPI standard only guarantees correctness, not efficiency
I in practice collective MPI calls by multiple threads get serialized . . .
I solution: use 4 or 8 MPI ranks per node, even though overall

memory footprint and communication volume increase
I Reduction operations take significant amount of time

I executed by a single thread only
I solution: use user-defined multithreaded reduction operator

I Communication volume for LOBPCG implementation
is 8 to 16 times larger than for Lanczos
I Bcast and Reduce of sets of vectors, instead of single vectors
P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 20 / 27

MPI communication (2019)

Strong Scaling on Theta (4 and 16 MPI ranks/node)

128 200 400 800 1600 3200 4392
nodes

10

100

1000
W

al
l-

cl
o
ck

 t
im

e
(s

ec
o
n
d
s)

Matrix Construction
Lanczos Solver (200 its)

LOBPCG Solver (46 its)

Two-body Observables

ideal scaling

Z = 2, N = 4, Nmax = 16, Dimension = 595,922,646, NNZ = 1,970,967,224,414

I Lanczos scales well up to (almost) the entire machine, but
communication becomes a bottleneck for LOBPCG solver

I With 3-body forces scaling of solver is significantly better
P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 21 / 27

MPI communication (2019)

NESAP for Perlmutter (2019-2020)

I Benchmark runs on Edison
I Use OpenMP with PGI compiler for GPU offload

I benchmark source code + test cases available
I stand-alone version of LOBPCG solver + test case

I Revisit using CUDA for GPU offload of matrix construction
I initial version was developed for Titan around 2012-2014, but only

for matrix construction with 3-body forces, and not recently updated
due to lack of manpower . . .

I Roofline analysis of determination sparsity structure
and matrix construction
I extract single-node ’simulator’ plus representative input data

I MPI communication
I extract MPI communication motif during iterative solver
I translate into ’Ember’ and use Structural Simulation Toolkit (SST)

to simulate the MPI communication
I make available to Cray for simulations for Slingshot network

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 22 / 27

MPI communication (2019)

MPI Communication Skeleton Simulations

SpMV and SpMVT

call MPI AllGatherV(..., col com)
call MPI Bcast(..., row com)
call MPI Reduce(..., row com)
call MPI Reduce Scatter(..., col com)

Orthogonalization, LOBPCG
call MPI AllReduce(..., MPI COMM WORLD)

Repeat

I communication dominates
SpMM on > 1,000 ranks
SpMV on > 20,000 ranks

I using more cores for reduction:
naive OpenMP loop and MKL saxpy

100 1000 10000

Number of MPI ranks (4 MPI ranks/node)

1

10

T
im

e
p
er

 i
te

ra
ti

o
n

8 Lanczos iterations (after 100 its)

LOBPCG iteration using blocks of 8 vectors

8 iterations of communication of single vectors

1 iteration of communication of block of 8 vectors

100 1000

Number of MPI ranks (4 MPI ranks/node)

0

0.5

1

1.5

2

2.5

T
im

e
p

er
 i

te
ra

ti
o

n

8 Reduce along rows on single vectors

8 ReduceScatter along columns on single vectors

Reduce along rows on block of 8 vectors

ReduceScatter along columns on block of vectors

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 23 / 27

MPI communication (2019)

Concluding remarks

I NESAP for Cori was essential for us
in order to get acceptable performance on KNL
I without vectorization, KNL does not perform as well as Haswell
I without NESAP, we would not have vectorization

in the matrix construction, nor in the evaluation of observables
I dungeon session (April 2016) was essential

to get this effort jump-started

I NESAP for Cori was useful for other systems
I Theta at ALCF
I also improved performance on Edison and Cori-Haswell

I Excited about NESAP for Perlmutter
I frequent interaction with Brandon Cook
I extraction of communication motif alread gives us better

understanding of current performance on Cori-KNL

NERSC staff is available to help – make use of it
P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 24 / 27

Physics results

Ground state energies of light nuclei

4
He

6
He

6
Li

7
Li

8
He

8
Li

8
Be

9
Li

9
Be

10
Be

10
B

-65

-60

-55

-50

-45

-40

-35

-30

-25
E

n
er

g
y
 (

M
eV

)

0
+

1
+

0
+

0
+

0
+

0
+

2
+

2
+

2
+

1
+

1
+

3
+

3
+

3
+

4
+

4
+

2
+

1/2
+

3/2
-

1/2
-

7/2
-

5/2
-

3/2
-

3/2
-

Expt. values

N
2
LO including 3N forces

Daejeon16 (fitted)

Daejeon16

8
Li

8
Be

-41

-40

-39

-38

-37

2
+

1
+

3
+ 1

+

3
+

2
+

P. Maris, I.J. Shin, and J.P. Vary, in preparation (2019)

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 25 / 27

Technical details

Performance improvements

or
ig

in
al

 6
4

bi
t r

ep

si
m

pl
ifi

ed

im
pr

ov
ed

0

10

20

30

40

50

60

w
al

l
ti

m
e

(s
ec

o
n

d
s)

no HT
2 HT
4 HT

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 26 / 27

Technical details

Performance improvements

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD 27 / 27

	Ab Initio Nuclear Structure
	MFDn
	Algorithmic Improvements (2013 - 2016)
	MPI Communication (2012-2014)
	NESAP for Cori-KNL (2016-2017)
	MPI communication (2019)
	Physics results
	Technical details

