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Ab Initio Nuclear Structure

Ab initio nuclear strucuture calculations

Given a Hamiltonian operator

—b‘_—»‘2
H = Z(pémij\) +ZVJ+ZV/jk+---
i<j

i<j i<j<k
solve the eigenvalue problem for wave function of A nucleons
HW(H,...,I'A) = )\\U(ﬁ,...,l’A)

» Eigenvalues X discrete (quantized) energy levels
> total energies: £y = (V[H|V) = —E5™"
> excitation energies: E... = Ey — Eg
» Eigenvectors: representation of A-body wave function
Challenges
» Self-bound quantum many-body problem,
with 3A degrees of freedom in coordinate (or momentum) space
» Not only 2-body interactions, but also intrinsic 3-body interactions
and possibly 4- and higher N-body interactions
» Strong interactions, with both short-range and long-range pieces
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Ab Initio Nuclear Structure

No-Core Configuration Interaction approach

Barrett, Navratil, Vary, Ab initio no-core shell model, PPNP69, 131 (2013)

Expand wavefunction in basis states |V) = > a;|®;)
Express Hamiltonian in basis <q>,-yﬂ|¢,-> = Hj
Diagonalize Hamiltonian matrix Hj;

No-Core: all A nucleons are treated the same

Complete basis — exact result
> caveat: complete basis is infinite dimensional

vvyvyyvyy

» In practice
> truncate basis
» study behavior of observables as function of truncation

» Computational challenge
> construct large (10'% x 10'°) sparse symmetric matrix Hj
> obtain lowest eigenvalues & -vectors corresponding to low-lying
spectrum and eigenstates
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Ab Initio Nuclear Structure

Convergence

» Variational: for any finite truncation of the basis space,
eigenvalue is an upper bound for the ground state energy
» Smooth approach to asymptotic value with increasing basis space
» Convergence: independence of both N,..,, and H.O. basis hw
> different methods using the same interaction should give same
results within (statistical plus systematic) numerical uncertainties
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Ab Initio Nuclear Structure

Computational Challenge

2-body
potentials

M-scheme dimension
number of nonzero matrix elements

10t 100 10 100 10° 100 10
matrix dimension

» Increase of basis space dimension with increasing A and N,,.,
> need calculations up to at least N,,., = 8, preferably Ny = 10
for meaningful extrapolation and numerical error estimates
» More relevant measure for computational needs
»> number of nonzero matrix elements
» current limit 10" (Cori, Theta)
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MFDn

Many-Fermion Dynamics for nuclear structure

MFDn: No-Core Configuration Interaction code
for nuclear structure calculations

» Fortran legacy code
> initial version dates back to early 90s (F77)
> distributed memory parallel code using MPI
> in use as production code at NERSC since early 2000s
> since late 2000s also used at OLCF and ALCF

» Ongoing algorithm development and code optimization
for current and next-generation HPC platforms
» SciDAC-2 (UNEDF), SciDAC-3, SciDAC-4 (NUCLEI)
» Jaguar Early Science, NESAP-KNL, NESAP-Perimutter
» Hybrid OpenMP / MPI, Fortran 90 — 2003
> construct many-body matrix Hj from input TBMEs (plus 3NFs)
> obtain lowest eigenpairs using LOBPCG or Lanczos algorithm
> use eigenvectors to calculate observables
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MFDn

Distributed symmetric matrix

» Matrix is symmetric, so we only need half the matrix
» Load-balancing
» 2-dimensional distribution of matrix over MPI ranks
> local load determined by number of nonzero matrix elements
> can be achieved by even distribution of many-body (n, I, j) orbitals
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MFDn

Jaguar Early Science Project (2008-2009)

» Cray XT5 Jaguar at OLCF
» 14C to '*N B-decay with chiral EFT NN + 3NF

P. Maris, J.P. Vary, P. Navratil, W.E. Ormand, H. Nam, and D.J. Dean, Origin of the anomalous long lifetime of ¢,
Phys. Rev. Lett. 106, 202502 (2011)

» First hybrid OpenMP / MPI version of MFDn

T T T
—— ldeal speedup —— ldeal speedup
+ -+ Construct sparse matrix 8|+ -+ Construct sparse matrix b
+—+ Lanczositerations +—+ Lanczositerations

+ -+ Evaluation of observables| + -+ Evaluation of observables
+ -+ Total time +-+Totd time

R

L L L L L L L L L L
% 1 2 3 4 % 2 4 6 8 10 12
number of threads (on Franklin, Cray XT4) number of threads (on 120 nodes on Jaguar, Cray XT5)

P. Maris, M. Sosonkina, J.P. Vary, E.G. Ng, C Yang, Scaling of ab-initio nuclear physics calculations on
multicore computer architectures, Procedia Computer Science 1, 97 (ICCS 2010)
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MFDn

Symmetric SpMV & SpMV?

MFDn is memory bound, so we store only half of the symmetric matrix,
and perform SpMV and SpMVT with the same data structures
» Compressed sparse row (CSR)
> need private output vectors for SpMVT to avoid race conditions
> prohibitively expensive on many-core architectures
» Compressed sparse block (CSB)
> improves data locality and cache performance
> allows for efficient OpenMP parallelization for SpMV and SpMV?
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Aktulga, Afibuzzaman, Williams, Bulug, Shao, Yang, Ng, Maris, Vary, IEEE Transactions on Parallel and Distributed Systems,
DOI 10.1109/TPDS.2016.2630699 (2016)
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Algorithmic Improvements (2013 - 2016)

Lanczos Algorithm vs. LOBPCG solver

Locally Optimal Block Preconditioned Conjugate Gradient:

SpMV acting on block of vectors, which improves cache performance,
allows for vectorization, and, with a good preconditioner, needs
significantly less iterations compared to Lanczos algorithm
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Despite doing
approximately 1.6
times more work in
SpMV/SpMM,
LOBPCG factor of 2
faster than Lanczos

Shao, Aktulga, Yang, Ng, Maris, and Vary,
Comp. Phys. Comm. 222, 1 (2018)
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MPI Communication (2012-2014)

Efficient distributed SpMV

» Communication needs to be e
load-balanced as well .

» Vectors distributed over all TR T
processors for orthogonalization DER

scatter

P. Maris (ISU)
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MPI Communication (2012-2014)

Efficient distributed SpMV — MP| communication

Aktulga, Yang, Ng, PM, Vary, Concurr. Comput. 26 (2014), doi:10.1002/cpe.3129
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» Optimize mapping onto network topology for non-overlapping
communication see also Oryspayev, PhD thesis 2016, ISU
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NESAP for Cori-KNL (2016-2017)

Tuning single-node performance on KNL

» Single-node performace using MFDn proxy
> local workload of one node out of 5,000 nodes production run
> construction of local matrix with dimension of about 118 x 10°
and 7.5 x 10° nonzero matrix elements
» local SpMV/SpMM and transpose SpMV/SpMM
»> no communication, no orthonormalization, no ’LOBPCG magic’

» Explore MPI and OpenMP scaling within node
» near-perfect MPI and OMP scaling up to 64 (68) ranks x threads
» OMP shared memory within node minimizes memory footprint
» Optimize memory placement
> quad-flat with vectors in MCDRAM and matrix in DDR4 gives
best performance but gain is offset by extra reboot time
» Vectorization
> use compiler report to see which loops vectorize automatically
» use OpenMP4 SIMD directives for manual vectorization
> split complicated innerloops into smaller and simpler subloops

B. Cook, P. Maris, M. Shao, N. Wichmann, M. Wagner, J. O'Neill, T. Phung and G. Bansal,
High performance optimizations for nuclear physics code MFDn on KNL, LNCS 9945, 366 (2016)

P. Maris (ISU) NESAP code optimizations for MFDn NUG meeting, 2019, Rockville MD



NESAP for Cori-KNL (2016-2017)

Matrix sparsity structure

160

170

180

190

200

» A-body problem with a-body interaction: nonzero matrix elements
iff at least (A — a) particles are in identical single-particle states

» Nonzero tiles of varying size (dashed lines)
» Tiles are combined to form (approximately) square CSB blocks
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NESAP for Cori-KNL (2016-2017)

Matrix construction

Compare pairs of many-body states to determine sparsity structure

» count nonzero tiles

I $0MP DO SCHEDULE (dynamic)

L . d =1, 1
» within nonzero tiles ° anonzerﬁci o
[ =1,
count nonzero ! comp:rje trunczzg\gsbitrepesentatlons
matriX elements xgrf? IEOR(coLTct()itrc)ep(i), row_bitrep(j))
ndiffs = popcntixor
if (ndiffs .gt. 2*hrank) cycle
. ! -body states pk
Construct nonzero matrix element PR Mgstate differences(
$ nparticles,
i % lstatelist(1: ticles, 1)
> store in CSB format : st 3
k3
(rO.W! COIUmn.’ Value) if (ngiifss.le. hrank) then
using 16-bit integers nnenzero = nnenzero + 1
for row and column indices celfy constructhel....)
within CSB block ndao
enddo
I$0MP END DO

Calculation of observables
after obtaining eigenvectors
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NESAP for Cori-KNL (2016-2017)

Performance improvements matrix construction

> Intel compiler opimization report:
inner loops do not vectorize
» no vector instruction for fortran function popcnt
> subroutine MBstate_difference contains lots of branching, cycle,
and early exit statements

» Without vectorization, performance is poor
» Strategy to improve performance

1. simplify MBstate_difference from about 120 lines to 20 lines
» not dealing with exceptions, which increases work-load slightly
> remove cycle and early exits (may need to pad several arrays)
> naively, significantly larger work-load (more comparisons executed),
but in practice only slightly slower
2. split inner loop to improve cache performance
3. split inner loops into subloops of appropriate length for vectorization

presented at IXPUG 2016, Sept. 2016, Argonne IL
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NESAP for Cori-KNL (2016-2017)

Improved matrix construction — performance
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NESAP for Cori-KNL (2016-2017)

Comparison Edison vs. Cori-Haswell vs. Cori-KNL

1
Edison, production June 2016
Edison, NESAP June 2017
Cori-HW, production June 2016
Cori-HW, NESAP June 2017
Cori-KNL, production 2016
Cori-KNL, NESAP June 2017 » dimension 252 million,

with 400 billion
nonzero matrix
elements

» 124 nodes on Edison
62 nodes on Cori
using 496 MPI ranks

ENENES

node hours

0 7
. G &
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» Tuning for KNL also improves performance Cori-HW and Edison
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NESAP for Cori-KNL (2016-2017)

Single-node scaling on KNL (Cori, Theta)
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» Good scaling up to number of cores available
on both Cori (open symbols) and Theta (closed symbols)
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MPI communication (2019)

Communication issues

» Communication time fluctuates wildly between different runs
> depends on placement of job on hardware
> solution: restrict job to subset of available switches
» Useful to tune some of the many MPI settings
> most important: module load craype-hugepages2M
» One MPI rank per node: communication by only one core
> one core cannot saturate communication bandwidth
» MPI standard allows more threads to perform MPI communication
however, MPI| standard only guarantees correctness, not efficiency
> in practice collective MPI calls by multiple threads get serialized ...
> solution: use 4 or 8 MPI ranks per node, even though overall
memory footprint and communication volume increase
» Reduction operations take significant amount of time
> executed by a single thread only
> solution: use user-defined multithreaded reduction operator
» Communication volume for LOBPCG implementation
is 8 to 16 times larger than for Lanczos
> Bcast and Reduce of sets of vectors, instead of:single vectors
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MPI communication (2019)

Strong Scaling on Theta (4 and 16 MPI ranks/node)

Z=2,N =4, Nmax = 16, Dimension = 595,922,646, NNZ = 1,970,967,224,414
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» Lanczos scales well up to (almost) the entire machine, but
communication becomes a bottleneck for LOBPCG solver
> With 3-body forces scaling of solver is significantly better
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MPI communication (2019)

NESAP for Perlmutter (2019-2020)

» Benchmark runs on Edison
» Use OpenMP with PGI compiler for GPU offload
> benchmark source code + test cases available
> stand-alone version of LOBPCG solver + test case
» Revisit using CUDA for GPU offload of matrix construction
> initial version was developed for Titan around 2012-2014, but only
for matrix construction with 3-body forces, and not recently updated
due to lack of manpower ...
» Roofline analysis of determination sparsity structure
and matrix construction
> extract single-node ’simulator’ plus representative input data
» MPI communication
> extract MPI communication motif during iterative solver
> translate into 'Ember’ and use Structural Simulation Toolkit (SST)
to simulate the MPI communication
> make available to Cray for simulations for Slingshot network
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MPI communication (2019)

MPI Communication Skeleton Simulations

SpMV and SpMVT

call MPI_AllGatherV(..., col_com)
call MPI_Bcast(..., row_com)
call MPI_Reduce(..., row_com)
8 Lanczos iterations (after 100 its)
call M PLReduceiscatter(_ - COLCOTT]) +—+ LOBPCG iteration using blocks of 8 vectors
m(‘nm

1 o—e 8 iterations of communication of single vectors (]
. . £ == | iteration of ion of block of 8 vectors
Orthogonalization, LOBPCG

Number of MPI ranks (4 MPI ranks/node)
call MPI_AlIReduce(..., MPI_.COMM_WORLD) ‘ ‘

% 8 Reduce along rows on single vectors

Repe at “—+ 8 ReduceScatier along columns on single vectors /
o—e Reduce along rows on block of 8 vectors

=—a ReduceScatter along columns on block of vectors

3
T

Time per iteration

» communication dominates
SpMM on > 1,000 ranks
SpMV on > 20,000 ranks

» using more cores for reduction:
naive OpenMP loop and MKL saxpy °*

Time per iteration

I
000

|
100 1
Number of MPI ranks (4 MPI ranks/node)
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MPI communication (2019)

Concluding remarks

» NESAP for Cori was essential for us
in order to get acceptable performance on KNL
> without vectorization, KNL does not perform as well as Haswell
> without NESAP, we would not have vectorization
in the matrix construction, nor in the evaluation of observables
» dungeon session (April 2016) was essential
to get this effort jump-started

» NESAP for Cori was useful for other systems
» Theta at ALCF
» also improved performance on Edison and Cori-Haswell

» Excited about NESAP for Perlmutter
> frequent interaction with Brandon Cook
> extraction of communication motif alread gives us better
understanding of current performance on Cori-KNL

NERSC staff is available to help — make use of it
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Physics results

Ground state energies of light nuclei
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P. Maris, 1.J. Shin, and J.P. Vary, in preparation (2019)
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Technical details

rmance improvements

1$0MP DO SCHEDULE(dynamic)
do i =1, ncols
nnz = 0
! compare truncated bitrepesentations
% Jor &' 1Eomteol_bitrep(i) bitrep(j)) ‘ —
xor = IEOR(col_bitrep(1), row_bitrep(;
ndiffs = popcnt(xor) 60 B o HT
if (ndiffs .le. 2*hrank) then
nnz = nnz + 1
rowdiflist(nnz) = j
endif
enddo

W
S

! compare many-body states phi
colstate(1l:nparticles) =
% colstatelist(1l:nparticles, 1)
do j =1, nnz
rowstate(l:nparticles) =
¢ rowstatelist(l:nparticles, rowdiflist(j)
call MBstate_differences(nparticles,
% colstate, rowstate, ndiflist)
1f (ndiffs .le. hrank) then
nnonzero = nnonzero + 1
endif
enddo

IS
S

wall time (seconds)

20

! collect nonzeros
nnonzero = 0
! to be vectorized
do j =1, nnz
1f (ndiflist(j) .le. hrank) then
nnonzero = nnonzero + 1

endif
enddo
enddo
!'$0MP END DO
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Technical details

Performance improvements

do 1 =1, ncols

nnonzero = 0
icol = col_bitrep(i)
colstate(l:npart) = colstatelist(l:npart, i)
loop over row states in sets of length VECLEN
do jmin = 0, nrows, VECLEN
|
!$omp simd aligned(xor, row_bitrep
do jj = 1, VECLEN
lrow = row_bitrep(jmin+jj)
dxur(]]) IEOR(icol, irow)

en
do jj =1, VECLEN ! compiler unrolls, but cannot vectorize popent
a ndiflist(jj) = popent(xor)
end do
do jj =1, VECLEN ! compiler vectorizes loop, no need for peel or remainder loop

1= 3mn + ]
1f (ndiflist(jj) .le. 2*hrank) then
nnz = nnz + 1
rowdiflist(nnz) =
end if
end do

if (nnz .ge. VECLEN) then
compare many-body states phi

do jj = 1, VECLEN ! compiler vectorizes loop, with peel and remainder loops
rowstate(l:npart) = rowstatelist(l:npart, FUWdlfl]St(
call MBstate_differences(npart, ! inlined, and unrolled
4 colstate, rowstate, ndiflist) !
end do

o jj = 1, VECLEN compiler vectorizes loop, no need for peel or remainder loop
1f (ndiflist(jj) .le. hrank) then
nnonzero = nnonzero + 1
endif
end do
reset nnz
nnz = nnz - VECLEN compiler vectorizes loop, no need for peel or remainder loop
do jj =1, nnz
rowdiflist(jj) = rowdiflist(jj+VECLEN)
end do
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