
Thomas Jefferson National Accelerator Facility

Bálint Joó, Jefferson Lab
2019 NERSC User Group (NUG) Meeting

Rockville, MD
July 19, 2019

Performance Portability and Programming
Models for C++ codes

Thomas Jefferson National Accelerator Facility

New Machines Coming! Look busy!

• AMD CPU + NVIDIA GPU

• Cray Slingshot Interconnect
• Intel CPU + Xe Technology • AMD CPU + AMD GPU

• ROCm (HIP)

If your code runs well on current
NVidia GPUs using CUDA

Or OpenACC you should be
Well positioned for

Perlmutter

If your code runs well on
Summit with CUDA,
Converting to HIP

may be mostly
automated

Thomas Jefferson National Accelerator Facility

What are some options out there?
OpenMP & OpenACC Kokkos & Raja HIP by AMD SyCL (Khronos)

• #pragma directives for
- Parallel for
- Reduction
- SIMD
- Offload
- Tasking

• Relies heavily on
compiler

• More C++ oriented
- Modern C++
- Parallelism via functors &

lambdas (forall, …)
- Policy driven (execution &

memory spaces)
• Many back ends
- OpenMP, CUDA, ROCm,…

 

• AMDs Accelerator API
• GPU focus
- Use OpenMP on CPU?

• (Very) Similar to CUDA
• Can target

- AMD GPUs
- NVIDIA GPUs

 

• C++-11
extensions

• Functors &
Lambdas

• Portable via
lower Khronos
layers (OpenCL)

 

Thomas Jefferson National Accelerator Facility

OpenMP
• Offloaded axpy in OpenMP
#pragma omp target teams distribute parallel for simd
 map(to:z[:N]) map(a,x[:N],y[:N])
for(int i=0; i < N; i++) // N is large
{
 z[i] = a*x[i] + b[i];
}

• Collapses:

- omp target - target the accelerator,

- omp teams - create a league of teams

- omp distribute - distribute the works amongst the teams

- omp parallel for simd - perform a SIMD-ized parallel for

- map a, x and y to the accelerator and map resulting z back out.

Thomas Jefferson National Accelerator Facility

Kokkos

• View - multi-dimensional array, index order specified by Layout, location by
MemorySpace policy. Layout allows appropriate memory access for CPU/GPU

• Parallel for dispatches a C++ lambda

• Portable: Parallel for done with back end: OpenMP, CUDA, ROCm, …

• Kokkos developers on C++ standards committee - work to fold features into C++

Kokkos::View<float[N],LayoutLeft,CudaSpace> x(“x”); // N is large
Kokkos::View<float[N],LayoutLeft,CudaSpace> y(“y”);
Kokkos::View<float[N],LayoutLeft,CudaSpace> z(“z”);

float a=0.5;

Kokkos::parallel_for(“zaxpy", N, KOKKOS_LAMBDA (const int& i) {
 z(i) = a*x(i) + y(i); // view provides indexing operator()
});

Thomas Jefferson National Accelerator Facility

Kokkos Performance Summary

563	

614	

782	

132	

79	

27	

442	

441	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	

Kokkos	Naïve	

Kokkos	Vector	(V=1)	

QUDA	

cpp_wilson_dslash	(SSE)	

Kokkos	Naïve		

Kokkos	Vector	(V=8,	No		AVX512)	

Kokkos	Vector	(V=8,	with	AVX512)	

QPhiX	(SOA=8)	
P1

00
	

KN
L	

SR
HS

	

GFLOPS	

Vol=32x32x32x32 sites

Legacy C++ with SSE, on KNL

Ninja Code

Ninja Code

Specialized AVX512 ops

Without Specialized AVX512 ops

Lattice QCD Wilson Dslash Operator (Sparse MV)

78.5% of Ninja Code

Thomas Jefferson National Accelerator Facility

Kokkos Performance Summary

563	

614	

782	

132	

79	

27	

442	

441	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	

Kokkos	Naïve	

Kokkos	Vector	(V=1)	

QUDA	

cpp_wilson_dslash	(SSE)	

Kokkos	Naïve		

Kokkos	Vector	(V=8,	No		AVX512)	

Kokkos	Vector	(V=8,	with	AVX512)	

QPhiX	(SOA=8)	
P1

00
	

KN
L	

SR
HS

	

GFLOPS	

Vol=32x32x32x32 sites

Legacy C++ with SSE, on KNL

Ninja Code

Ninja Code

Specialized AVX512 ops

Without Specialized AVX512 ops

Lattice QCD Wilson Dslash Operator (Sparse MV)

Compiler had
issues vectorizing

std::complex?

78.5% of Ninja Code

Thomas Jefferson National Accelerator Facility

HIP
• HIP is AMD’s “C++ Heterogeneous-Compute

Interface for Portability”

• Take your CUDA API and replace ‘cuda’ with
‘hip’:
- cudaMemcpy() -> hipMemcpy()

- kernel<<>>() -> hipLaunchKernel(kernel,…)

- and other slight changes.

- You can use hipify tool to do first pass of conversion
automatically

• Open Source

• Portability between NVIDIA and AMD GPUs only.

Thomas Jefferson National Accelerator Facility

SyCL
• C++11 based standard

by Khronos group.

• Follows concepts of
OpenCL

- buffers, command
queues, kernels, etc

• ‘Single Source File’
compilation

- OpenCL kernels were in
separate files

• much less verbose than
OpenCL

Queue myQueue;
buffer<float,1> x_buf(LARGE_N);
buffer<float,1> y_buf(LARGE_N);
buffer<float,1> z_buf(LARGE_N);

// … fill buffers somehow …
float a = 0.5;
{
myQueue.submit([&](handler& cgh) {
 auto x=x_buf.getAccess<access::mode::read>(cgh);
 auto y=y_buf.getAccess<access::mode::read>(cgh);
 auto z=z_buf.getAccess<access::mode::write>(cgh);

 cgh.parallel_for<class zaxpy>(LARGE_N,[=](id<1> id){
 auto i = id[0];
 z[i]=a*x[i] + y[i];
 });
});
}

Thomas Jefferson National Accelerator Facility

Queue myQueue;
buffer<float,1> x_buf(LARGE_N);
buffer<float,1> y_buf(LARGE_N);
buffer<float,1> z_buf(LARGE_N);

// … fill buffers somehow …
float a = 0.5;
{
myQueue.submit([&](handler& cgh) {
 auto x=x_buf.getAccess<access::mode::read>(cgh);
 auto y=y_buf.getAccess<access::mode::read>(cgh);
 auto z=z_buf.getAccess<access::mode::write>(cgh);

 cgh.parallel_for<class zaxpy>(LARGE_N,[=](id<1> id){
 auto i = id[0];
 z[i]=a*x[i] + y[i];
 });
});
}

SyCL
• SYCL manages

buffers

• Only access buffers
via accessors

• can track accessor
use and build data
dependency graph to
automate data
movement

• What does this mean
for non SyCL
Libraries with
pointers? (e.g. MPI)

SyCL runtime
manages data in

buffers
access buffer data
via accessors in
command group

(cgh) scope or host
accessor

kernels must have a
unique name in C++

Thomas Jefferson National Accelerator Facility

How is SyCL portable?
• Essentially SyCL compiler creates

OpenCL kernels from the Command
Group Kernel functors/lambdas

• These can (in principle) compile into
- SPIR: The Khronos Group’s ‘Standard

Portable Intermediate Representation’

- PTX: for NVIDIA GPUs

- HIP and/or GCN ISA for AMD

• The final result can be consumed by
the target machine runtime.

• Many SyCL implementations are
available

Clang
with Intel

SyCL

Codeplay
ComputeCPP HIP SyCL

PTX HIP

ROCm CUDA

…

CPU/GPU OpenCL/CUDA Driver

Thomas Jefferson National Accelerator Facility

Summary
• Lots of options: OpenMP, Kokkos, RAJA, SyCL, HIP etc.

- but will there be one that works well on all of Perlmutter, Aurora and Frontier?

• There are similarities, with differences between Kokkos, Raja, and SyCL
- Express parallelism via functors/lambdas

- Data Movement: Views v.s. Buffers, Explicit v.s. Implicit movement, Accessor Scope.

• Parallel features are also being incorporated into standard C++
- parallel algorithms, pSTL, std::simd, etc…

- Kokkos developers & others are members on the C++ standards committee

• I have had some very positive experiences with Kokkos
- Performance was within 20% or so of hand tuned code on P100 (SummitDev) even better on Volta.

- Performance matched hand tuned code on KNL - after manual vectorization of complex. Kokkos::simd will fix this(?)

• Need to repeat these experiments with OpenMP & SyCL
- ongoing current work. I hope to have more results on this soon.

- as always: your application’s mileage may vary.

Thomas Jefferson National Accelerator Facility

References
• OpenMP: https://www.openmp.org/

• Kokkos: https://github.com/kokkos/kokkos

• RAJA: https://github.com/LLNL/RAJA

• HIP: https://gpuopen.com/compute-product/hip-convert-cuda-to-portable-c-code/

• SyCL: https://www.khronos.org/sycl/

• Intel One API

• Performance Portability: https://performanceportability.org/

https://www.openmp.org/
https://github.com/kokkos/kokkos
https://github.com/LLNL/RAJA
https://gpuopen.com/compute-product/hip-convert-cuda-to-portable-c-code/
https://www.khronos.org/sycl/
https://blogs.intel.com/psg/intels-one-api-will-allow-you-to-write-code-once-then-target-many-processing-resources-cpus-gpus-fpgas-ai-engines/
https://performanceportability.org/

Thomas Jefferson National Accelerator Facility

Acknowledgements
• I’d like to acknowledge funding from US DoE Office of Nuclear Physics, Office of

High Energy Physics and the Office of Advanced Scientific Computing Research
through the SciDAC Program (1,2,3, and 4) and from the Exascale Computing
Project

• I’d like to acknowledge and thank all my collaborators who worked with me on the
Kokkos port so far: Jack Deslippe, Thorsten Kurth, Daniel Sunderland, Dan
Ibanez, and thank NERSC for supporting a month long sabbatical in 2017 to
work on Kokkos.

• Thank the Kokkos team for all their help in particular: C. Trott. D. Sunderland, D.
Ibanez, S. Rajamanickam

• I’d like to acknowledge the systems used for the data shown here, including
NERSC Cori, OLCF Summit-Dev, JLab KNL and GPU clusters.

