NERSC Director's Perspective

NERSC: the Mission HPC Facility for DOE Office of Science Research

Office of Science

Largest funder of physical sciences research in the U.S.

Bio Energy, Environment

Particle Physics, Astrophysics

Computing

Nuclear Physics

Materials, Chemistry, Geophysics

Fusion Energy, Plasma Physics

NERSC supports a broad user base

7,000 Users 800 Projects 700 Codes ~2000 publications per year

ERC

Simulations at scale

Data analysis support for DOE's experimental and observational facilities Photo Credit: CAMERA

NERSC Systems Roadmap

What's changing?

- Applications need to adapt to new systems
- Increasing engagement from Experimental and Observational Facilities
- More emphasis on data analysis, AI and Deep Learning

NERSC-9: A System Optimized for Science

- Cray Shasta System providing 3-4x capability of Cori system
- First NERSC system designed to meet needs of both large scale simulation and data analysis from experimental facilities
 - Includes both NVIDIA GPU-accelerated and AMD CPU-only nodes
 - Cray Slingshot high-performance network will support Terabit rate connections to system
 - Optimized data software stack enabling analytics and ML at scale
 - All-Flash filesystem for I/O acceleration
- Robust readiness program for simulation, data and learning applications and complex workflows
- Delivery in late 2020

GPU Readiness Among NERSC Codes

GPU Status & Description	Fraction
Enabled: Most features are ported and performant	32%
Kernels: Ports of some kernels have been documented.	10%
Proxy: Kernels in related codes have been ported	19%
Unlikely: A GPU port would require major effort.	14%
Unknown: GPU readiness cannot be assessed at this time.	25%

A number of applications in NERSC workload are GPU enabled already.

We will leverage existing GPU codes

from CAAR + Community

Hack-A-Thons and App Perf. Training

GPU Targeted Events

Jan July Jan 2019 2019 2020

Community Training

Hack-a-Thon

NESAP for Perlmutter

Simulation 12 Apps Data Analysis 8 Apps

Learning 5 Apps

- 5 ECP Apps Jointly Selected (Participation Funded by ECP)
- 20 additional teams selected through Open call for proposals.
 - <u>https://www.nersc.gov/users/application-performance/nesap/nesap-projects/</u>
- Access to Cori GPU rack for application readiness efforts.

Transition of the entire NERSC workload to advanced architectures

To effectively use Cori
KNL, users must exploit70%parallelism, manage data60%locality and utilize longer
vector units. All features50%that will be present on
exascale era systems40%

Office of

Science

Engagement with Experiments

What's different?

- Proliferation of data from DOE user facilities
- Scientific workflows have become more complex
 - Streaming data to HPC facilities
 - Real-time/Interactive access
 - Rich 'Data' stack
- Important scientific problems are requiring both simulation and data analytics
 - Advanced Machine Learning and Statistics methods + tools required

NERSC supports a large number of users and projects from DOE SC's experimental and observational facilities

Office of

Science

BERKELEY LA

simulations and modeling

Requirements reviews and users from experiments facilities describe numerous pain points

- Workflows require manual intervention and custom implementations
- Difficult to surge experimental pipelines at HPC facility in 'real-time'

ス

earch

licy

- I/O performance, storage space and access methods for large datasets remain a challenge
- Searching, publishing and sharing **data** are difficult
- Analysis codes need to be adapted to advanced architectures
- Lack of scalable analytics software
- Resilience strategy needed for fast-turnaround analysis needs
 - including: coordinating maintenances, fault tolerant pipelines, rolling upgrades, alternative compute facilities...
- No federated identity between experimental facilities and NERSC
- Not all scientists want command-line access.

Science Engagements

High-rate detectors use NERSC for real-time experimental feedback, data processing/management, and comparison to simulation

Processing streaming alerts (from NCSA) for detection of supernova and transient gravitational lensing events

Complex multi-stage workflow to analyse response of soil microbes to climate change

4D STEM data streamed to NERSC, used to design ML algorithm for future deployment on FPGAs close to detector

High-rate detectors use ESnet and NERSC for real-time experimental feedback and data processing

Nightly processing of galaxy spectra to inform next night's telescope targets

Needs from NERSC

Experiment	What runs at NERSC?	What runs elsewhere?
LCLS	5-10% of experiments that require >32PF compute in 2021 (~3% >128PF in 2027)	All other experiments at LCLS
ALS	2-3 beamlines with large computing requirements, i.e. tomography and ptychography (~200MB/s)	Other ~40 ALS beamlines
NCEM	Stream super high-rate (>400 Gb/s) detector data to NERSC for algorithm design	Low data-rate microscopes do not use NERSC
LSST-DESC	Large-scale cosmology and instrument simulations (NESAP team); Supernova alert processing draws on multiple PB-scale data sources	Small-scale analysis done at home institutions
DESI	Short-turnaround compute needs for rapid analysis, co-location of data and simulation	Small-scale analysis done at home institutions
LZ	Combination of large-scale simulations and relatively small data coming from the experiment	Mirror data processing in UK; small- scale analysis done at home institutions
JGI/FICUS	Complex multi-stage workflow with some large MPI components (FICUS); Large-scale assembly pipelines (hipmer)	JGI exploring appropriate compute options for some workloads

Data, AI and Deep Learning

	HEP		BER		BES		NP	FES	
	Astronomy	Cosmology	Particle Physics	Climate	Genomics	Light Sources	Materials	Heavy Ion Colliders	Plasma Physics
Classification	×		×	×	×	×	×	X	×
Regression		×			×	×	×	×	X
Clustering		X	×	×	×	×	×	X	×
Dimensionality Reduction				×				X	
Surrogate Models	×	X	×				×	X	×
Design of Experiments		×		×			×		×
Feature Learning	×	X	×	×	×	×	×	×	X
Anomaly Detection	×		X	×		X		X	

Deep Learning for Science

Modeling galaxy shapes

Clustering Daya Bay events

Detecting extreme weather

Classifying LHC events

Decoding speech from ECoG

Oxford Nanopore sequencing

Big Data Center collaboration with Cray and Intel

Enabling Precision Analytics for Climate Science

Climate projections employ coarse analytics on high fidelity model output

- Mean temperature increase, sea level rise
- Characterizing impact of extreme weather requires precision analytics

Our Goal

- Analyze complex datasets with high spatio-temporal resolution
- Extract high quality segmentation masks leveraging state-of-the-art Deep Learning models (Deeplabv3+)

Gordon Bell Prize for achieving over an Exaflop (FP16) on Summit

NERSC Big Data Stack

Strong Adoption of Data Software Stack

BERKELEY LAB

Data Features	Cori experience	N9 enhancements
I/O and Storage	Burst Buffer	All-flash file system: performance with ease of data management
 Analytics Production stacks Analytics libraries Machine learning 	User defined images with Shifter NESAP for data New analytics and ML libraries	Benchmark Production Analytics workflows. Data apps in NESAP at outset Optimised analytics libraries and deep learning application benchmarks
Workflow integration	SchedMD Real-time queues	SLURM co-scheduling Norkflow nodes integrated
Data transfer and streaming	SDN Cori Vyatta L2 Switch Core Rir SDN Cori Vyatta L2 Switch Core Rir Cori Vyatta L2 Switch Core Rir	Slingshot ethernet-based

NERSC Community Engagements

Jupyter Community Workshop

June 11-13, 2019 • NERSC and Berkeley Institute for Data Science, Berkeley, CA

GPUs for Science Day

July 2-3, 2019 • NERSC, Berkeley, CA

Deep Learning for Science Summer School

July 15-19, 2019 • NERSC, Berkeley, CA

Monterey Data Conference

August 5-8, 2019 • Monterey Marriott, Monterey, CA

Tutorials Lead at SC18, ECP19, GTC19 and ISC19:

Parallel I/O in Practice (SC18) Exascale I/O Technologies (ECP19) Deep Learning at Scale (SC18, ECP19, ISC19) Getting Started with Containers on HPC (ISC19) OpenMP Common Core: a "Hands-On" Exploration (SC18) Managing HPC Software Complexity with Spack (SC18, ECP19) Container Computing for HPC and Scientific Workflows (SC18, ECP19) Performance Tuning of Scientific Codes with the Roofline Model (SC18, ECP19, ISC19, GTC19)

- We are very excited about Perlmutter
 - Significant increase in capabilities over Cori
 - NESAP is a key to broad adoption of GPU technologies
 - 1st NERSC system designed with data in mind from the very beginning
 All flash file system, new interconnect, big data stack
- Demand from Experimental and Observational Facilities is increasing dramatically
- NERSC has made a significant investment in data, AI and deep learning

Questions?

Cori: Pre-Exascale System for DOE Science

- Cray XC System heterogeneous compute architecture
- 9600 Intel KNL compute nodes
 - 68 cores, 4 HW treads/core, AVX-512, 16GB HBM, 96GB DRAM
- >2000 Intel Haswell nodes
- Cray Aries Interconnect
- NVRAM Burst Buffer, 1.6PB and 1.7TB/sec
- Lustre file system 28 PB of disk, >700 GB/sec
- Investments to support large scale data analysis
 - High bandwidth external connectivity to experimental facilities from compute nodes
 - Virtualization capabilities (Shifter/Docker)
 - More login nodes for managing advanced workflows
 - Support for real time and high-throughput queues

NERSC Exascale Scientific Application Program (NESAP)

- Prepare DOE SC users for advanced architectures like Cori
- Partner closely with ~20 application teams and apply lessons learned to broad NERSC user community.
- >1/2 of projects have used > 1/2 their time on Cori KNL

NESAP For Cori Included the Following ECP Apps

LatticeQCD	WDMApp	E3SM	ECP NESAP for Cori
NWChemEX	WarpX	Urban	Codes
GAMESS	Exastar	ExaSGD	ECP Codes Used at NERSC
EXAALT	Exasky	CANDLE	
ExaAm	EQSIM	ExaFEL	
QMCPACK	SubSurface	ExaSMR	
Combustion	Exabiome	MFIX	

EXAALT, WDMApp, WaprX, Exabiome, ExaFEL are Pre-Selected for NESAP for Perlmutter. More apps to be announced Feb. 2019.

Users Demonstrate Groundbreaking Science Capability

Orbits: 4.1300 The second sec

Large Scale Particle in Cell Plasma Simulations

Stellar Merger Simulations with Task Based Programming

Largest Ever Quantum Circuit Simulation

Largest Ever Defect Calculation from Many Body Perturbation Theory > 10PF

Deep Learning at 15PF (SP) for Climate and HEP

achieve 1 PF

Galactos: Solved 3-pt correlation analysis for Cosmology @9.8PF

608 M hours provided to ECP teams in 2018

Compute Node Details

- CPU only nodes
 - Next Generation AMD CPUs
 - CPU only cabinets will provide approximately same capability as *full* Cori system (~8B hours) > 4000 nodes
 - Efforts to optimize codes for KNL will translate to NERSC-9 CPU only nodes
- CPU + GPU nodes
 - Next Generation NVIDIA GPUs with Tensor cores, high bandwidth memory and NVLINK-3
 - Unified Virtual Memory for improved programmability
 - 4 to 1 GPU to CPU ratio
 - (> 16B hours)

- Native support for generic Linux Sockets
- Traffic Class (QoS levels)
- Converged fabric

Optimized for HPC

- Low latency
- MPI and collective offload
- Congestion control
- Adaptive routing

Commodity + HPC

- 64-port Rosetta Switches
- 25GBps Cray NIC (200Gbps)

Slingshot Network

NESAP for Perlmutter

Simulation ~12 Apps Data Analysis ~8 Apps

Learning ~5 Apps

- 5 ECP Apps Jointly Selected (Participation Funded by ECP)
- Open call for proposals.
 - App selection will contain multiple applications from each SC Office and algorithm area
 - Additional applications (beyond 25) will be selected for second tier NESAP with access to vendor/training resources and early access

Workflows and Data Analytics

NERSC-9: A System Optimized for Science

- Cray Shasta System providing 3-4x capability of Cori system
- First NERSC system designed to meet needs of both large scale simulation and data analysis from experimental facilities
 - Includes both NVIDIA GPU-accelerated and AMD CPU-only nodes
 - Cray Slingshot high-performance network will support Terabit rate connections to system
 - Optimized data software stack enabling analytics and ML at scale
 - All-Flash filesystem for I/O acceleration
- Robust readiness program for simulation, data and learning applications and complex workflows
- Delivery in late 2020

Platform Storage System Design Goals

Use Case

Meet the needs of users

- Support high IOPS & metadata rates for data analysis
- Retain benefits of burst buffer
- Collapse performance tiers

Prepare for the future

 Prove Lustre optimizations for all-flash performance world

NESAP for Perlmutter

Simulation ~12 Apps Data Analysis ~8 Apps

Learning ~5 Apps

- 5 ECP Apps Jointly Selected (Participation Funded by ECP)
- Open call for proposals.
 - App selection will contain multiple applications from each SC Office and algorithm area
 - Additional applications (beyond 25) will be selected for second tier NESAP with access to vendor/training resources and early access

NERSC already supports a large number of users and projects from DOE SC's experimental and observational facilities

Background

Radiation

ALS

Light Source

NCEM

Office of Science

Alice Large Hadron Collider

Atlas

Large Hadron Collider

Dayabay Neutrinos

Crvo-EM

LCLS Light Source

DESI

Joint Genome Institute Bioinformatics

0

ASCR BER BES FES HEP NP SBIR

~35% (235) of ERCAP projects self identified as confirming the primary role of the project is to 1) analyze experimental data or; 2) create tools for experimental data analysis or; 3) combine experimental data with simulations and modeling

of Projects Analyzing Experimental Data or Combining Modeling and Experimental Data by SC Office

Platform Storage System Design Goals

Meet the needs of users

- Support high IOPS & metadata rates for data analysis
- Retain benefits of burst buffer
- Collapse performance tiers

• Prepare for the future

 Prove Lustre optimizations for all-flash performance world

NERSC

"Storage 2020: A Vision for the Future of HPC Storage," Berkeley, CA, 2017. Available online: https://escholarship.org/uc/item/744479.

Community File System: High-capacity storage

- NERSC-9 scratch for hot, short-term data
- Community file system for cooler, longer-term data
 - Replace project file system
 - ~50 PB initially

Office of Science

- Grow to > 200 PB for N9
- Emphasis on data management, access, and sharing

"Storage 2020: A Vision for the Future of HPC Storage," Berkeley, CA, 2017. Available online: <u>https://escholarship.org/uc/item/74/479.po</u>

NERSC Big Data Stack

NERSC-9 System Deployment Timeline Nersc

Milestone	Date
NESAP Call for Proposals Due	Dec. 2018
GPU Rack on Cori available for NESAP Users	Dec. 2018
NERSC-9 System Delivery	Oct. 2020
System Integration with NERSC Complete	Dec. 2020
Acceptance Testing Begins	Dec. 2020
NESAP Teams on NERSC-9 System	Jan. 2021
All users enabled on NERSC-9 System	Apr. 2021
stem Acceptance	Aug. 2021 4

NERSC-9 System Optimized for Simulation and Data Users

In order to meet science requirements and demonstrate exascale-era

technologies accelerator technology was essential

- Significant fraction of NERSC workload can now use GPUs
 - GPU programming has matured
 - Improved software environment
 - Increases in GPU memory capacity improve programmability
- System contains large number of CPU-only nodes for applications that are not yet ready

System designed to meet needs of data analysis from experimental facilities

- System well balanced between network and FLOPS
- Optimized network for data ingest from experimental facilities
- Real-time scheduling capabilities
- Supported analytics stack including latest ML/DL software
- System software supporting rolling upgrades for improved resilience

Photo Credit: CAMERA

NERSC-9 at a glance

External Network Connectivity

A new approach for System-to-Center integration

- Ethernet compatible Slingshot allows for seamless connectivity
 - blurs the line of what is "inside" or "outside" the system
- Slingshot on Rosetta Switches to Ethernet on Edge Routers
- Using a pair of Edge Routers with 400Gb ports
 - 1.9 Tb/s sustained bandwidth across a converged fabric
 - ~4x increase in bandwidth from what is available to Cori
 - provides integration point for N9, the Center and the WAN

Transitioning From KNL to AMD Processors

Codes optimized on Xeon Phi (KNL) will run well on Perlmutter

Many KNL architecture features are present on Perlmutter CPUs

Many-Core MPI+OpenMP Programming Model Will Continue

Easier Onramp to "Many-Core" with Perlmutter CPUs than with KNL

More Traditional Cores Single Memory Technology

GPU Transition Path for CPU Apps

NESAP for Perlmutter will extend activities from NESAP for Cori

- 1. Identifying and exploiting on-node parallelism threads + vector
- 2. Understanding and improving data-locality within the cache-memory hierarchy

What's New?

- 1. Heterogeneous compute elements
- 2. Identification and exploitation of even more parallelism
- 3. Emphasis on performance-portable programming approach:

Programming Models Supported

CUDA, CUDA FORTRAN, OpenACC, Kokkos, Raja, OpenMP NRE with PGI/

Engaging around Performance Portability

OpenACC

NRE with PGI to enable OpenMP GPU acceleration

Directives for Accelerators NERSC will pursue membership in OpenACC

Performance Portab	ility / Measurements / Measurement Techniques	Q Search
	speed and vector/instruction-sets)	
Performance Portability Introduction	 The application or algorithm may be fundamentally limited by different aspects of the system on different HPC system. 	Table of contents Measuring Portability
Office of Science Facilities ~	As an example, an implementation of an algorithm that is limited by memory bandwidth may be	Measuring Performance
Performance Portability ^ Overview	achieving the best performance it theoretically can on systems with different architectures but could be achieving widely varying percentage of peaks FLOPS on the different systems.	 Compare against a known, well-recognized (potentially non-portable), implementation.
Definition Measurements ^ Measurement Techniques	Instead we advocate for one of two approaches for defining performance against expected or optimal performance on the system for an algorithm:	 Use the roofline approach to compare actual to expected performance
Collecting Roofline on KNL Collecting Roofline on GPUs	1. Compare against a known, well-recognized (potentially non-portable),	
Strategy Approaches ~		
Case Studies 👻	Some applications, algorithms or methods have well-recognized optimal (often hand-tuned)	
Summary	implementations on unrerent architectures. These can be used as a baseline for defining relative	
Other Resources	here	

Many performance tools exist at ALCF, NERSC and OLCF for the purposes of profiling

NERSC leading development of performanceportability.org

N9 will also have compiler support for Kokkos and RAJA

Doug Doerfler leading performance portability workshop at SC18, and 2019 DOE COE perf. port. meeting

