
The Multicore-aware Data Transfer
Middleware (MDTM) Project

Wenji Wu (FNAL), Dantong Yu (BNL)
wenji@fnal.gov, dtyu@bnl.gov

ASCR Next-Generation Network for Science (NGNS)
Principal Investigators’ (PI) Meeting

Rockville, MD September 16-17, 2014

1

Presenter
Presentation Notes
Hello, everybody, I am Wenji from Fermilab.

My project is The multicore-aware data transfer middleware (MDTM) project, this is a joint work with dantong from BNL

In this talk, I will first talk about why we will do this project, and the MDTM architecture. Then Dantong will talk about our initial results.

mailto:wenji@fnal.gov;dtyu@bnl.gov

Problem Space
• Multicore/manycore has become the norm for high-

performance computing.
• Existing data movement tools are still limited by major

inefficiencies when run on multicore systems
– Existing data transfer tools can’t fully exploit multicore

hardware, especially on NUMA systems
– Disconnect between software and multicore hardware renders

I/O processing inefficient
– Performance gap between disk and network devices difficult to

narrow on NUMA systems

These inefficiencies will ultimately result in performance
bottlenecks on end systems. Such bottlenecks also
impede the effective use of advanced high-bandwidth
networks.

2

A simple inefficiency case …

Scheduling without I/O locality

How can we improve?

Scheduling with I/O locality

General-purpose OSes have only limited support for I/O locality!

3

Presenter
Presentation Notes
Here is a NUMA system with two NUMA nodes. On NUMA system, remote I/O accesses is expensive.

However, with default OS support, remote I/O accesses

Our solution

• The Multicore-aware Data Transfer Middleware
(MDTM) Project
– Collaborative effort by Fermilab and Brookhaven

National Laboratory
– Funded by DOE’s Office of Advanced Scientific

Computing Research (ASCR)

MDTM aims to accelerate data movement toolkits
on multicore systems

4

MDTM Architecture

MDTM consists of two components:
• MDTM data transfer application (BNL)

• Adopts an I/O-centric architecture that uses dedicated threads to perform
network and disk I/O operations

• MDTM middleware services (FNAL)
• Harness multicore parallelism to scale data movement toolkits on host

systems

MDTM Architecture MDTM Data Transfer Model

5

MDTM Architecture (cont.)

I/O-Centric architecture
Parallel data transfer

Data layout preprocessing

Data flow-centric scheduling
NUMA-awareness scheduling

I/O locality optimization
Maximizing parallelism

MDTM Software Logical Functions and Modules

6

How does MDTM works?
A MDTM application spawns three types of threads

– Management threads to handle user requests and
management-related functions

– Dedicated disk/storage I/O threads to read/write from/to
disks/storages

– Dedicated network I/O threads to send/receive data
A MDTM data transfer application accesses MDTM
middleware services explicitly via APIs
In operation, an MDTM middleware daemon will be
launched. It will support two types of services

– Query service allow MDTM APP to access system configuration
and status

– Scheduling service assigns system resources based on
requirements of data transfer applications

7

How does MDTM work? (Interaction)

MDTM IPC Design

8

How does MDTM work? (Middleware)
• Each connection associated with a

cost value which reflects
scheduling factors like distance,
traffic throughput and etc.

• Each node contains a cost table to
its neighbors

• Applying Dijkstra’s Algorithm to
find the lowest cost path from
CPU node to the NIC/Disk node in
question

• pick up the core associated to the
lowest cost path

• Pros and Cons
more extensive system picture;
scalable; dynamic; more
complicated data structure

MDTM Middleware Scheduling

9

How does MDTM work? (MDTMApp)

MDTM APP Preprocessing module

10

System layout table
Lock objects

Data Access/Transmission Logic
(Application memory layout)

Management
thread

Sender

……
Sender

Reader

……
Reader

Memory

Preprocessing
thread

Logger

Threads

……
…… Data block list

Shared data

Kernel space
User space

HBA, HCA, Hardware

Various kernel data structures, file descriptors, sockets, queue pairs, etc

MDTM deployment

A. MDTM client – server data transfer

B. MDTM third party data transfer

c. An MDTM server works with a standard FTP client

12

Initial Tests – Large Files
• Parallel streams from 2 SSDs at source host to 4

RAIDs at destination host
• Techniques used: locality-aware binding, grouping,

parallel I/O of disk and network, sequential writing

13

Initial Tests – Large Files

14

0

500

1000

1500

2000

2500

3000

1 File 2 Files 4 Files

B
an

dw
id

th
 (M

B
ps

)

Parallel Files

mdtmApp (avg)

mdtmApp (peak)
0

20
40
60
80

100
120
140
160
180
200

1 File 2 Files 4 Files
C

PU
 U

sa
ge

 (%
)

Parallel Files

mdtmApp SNK

mdtmApp SRC

Initial Tests – Small Files

• Parallel streams
from 4 RAIDs at
source to /dev/null
at destination,
total 4,000 files
with log-normal
size distribution

• Techniques used:
locality-aware
binding/grouping,
sorting, pipelining

15

Initial Tests – Small Files

16

0

500

1000

1500

2000

2500

3000

3500

32KB 128KB 512KB 2MB 8MB

B
an

d
w

id
th

 (
M

B
p
s)

Block Size

mdtmApp (avg)

mdtmApp (peak)

0

50

100

150

200

250

300

350

400

450

32KB 128KB 512KB 2MB 8MB

C
P
U

 U
sa

ge
 (
%

)

Block Size

mdtmApp SNK

mdtmApp SRC

Presenter
Presentation Notes
Where is the bandwidth information?

Current Status
• We are on schedule, with both the application and

middleware teams achieving their year-1 milestone goals.
• Major modules have been implemented

– Thread/flow management, request preprocessing, and various
data access/transmission methods. (by BNL)

– Multicore system profiling, topology-based resource scheduling,
interrupt affinity for network I/O, and web-based monitoring
and management (by FNAL)

• What questions now to ask?
– With new Intel Knight landing architecture and external NUMA-

link by SGI, NUMA expands horizontally among clusters and
vertically with the intra node level, Is there any standard
middleware, API, library to support intelligent scheduling?

– Asynchronous event-driven model and synchronous parallel
threads for end-to-end data transfer flows.

17

Future Work
• MDTM middleware future work

– Web-based remote monitoring capability
• Online and real-time monitoring of specific data transfer’s status and

progress
• Online and real-time monitoring of data transfer node system status

– Web-based remote management capability
– Support core affinity on disk I/O
– Support QoS mechanisms for differentiated data transfer

• MDTM application future work
– Load balancing among task groups
– Dynamic and flexible allocation of resources such as thread

pool and buffer to accommodate dynamic user loads.
– Client-server interaction
– Performance monitoring and reports to users
– Intensive tests on large-scale testbeds

18

Questions?

Demo

19

http://mdtm-server.fnal.gov:1337

http://mdtm-server.fnal.gov:1337

	The Multicore-aware Data Transfer Middleware (MDTM) Project
	Problem Space
	A simple inefficiency case …
	Our solution
	MDTM Architecture
	MDTM Architecture (cont.)
	How does MDTM works?
	How does MDTM work? (Interaction)
	How does MDTM work? (Middleware)
	How does MDTM work? (MDTMApp)
	Data Access/Transmission Logic�(Application memory layout)
	MDTM deployment
	Initial Tests – Large Files
	Initial Tests – Large Files
	Initial Tests – Small Files
	Initial Tests – Small Files
	Current Status
	Future Work
	Questions?��Demo��

