Automated Metadata, Provenance Cataloging and Navigable Interfaces: Ensuring the Usefulness of Extreme-Scale Data*

David Schissel, Gheni Abla, Bobby Chanthavong, Sean Flanagan, Xia Lee – General Atomics/DIII-D

Alex Romosan, Arie Shoshani - LBNL

Martin Greenwald, Josh Stillerman, John Wright – MIT/C-MOD

NGNS PI Meeting September 17, 2014 Rockville, MD

> *Supported by US Department of Energy

Insuring the Usefulness of Extreme-Scale Data: System for Fusion Science Operational

Objectives:

- Create a data model, infrastructure, and a set of tools
 to automatically document workflow & data
 provenance from any tool that processes data
- For each data element: who, what, when, how, why including tracking connections & dependencies between data elements
- Deploy interactive tools for efficient browsing and searching of workflows & associated data
- Production deployment on real-world fusion data
- Extend solution to other sciences within SC portfolio

Approach:

- Integrated metadata, provenance & ontology system
- Primitive and languages for annotation
- Database schema design for general solution
- Research on user interfaces: graphical navigation
- Demonstrate on real-world fusion applications with early deployment & agile development
- Extend to other sciences to validate generality

Data being loaded, system being refined based on feedback

		NFO		(+)	M/O			
3	10	ou politican	edu (000		200720000	$\gamma > \sigma$	R Coode	
	rione .	Alter Alter d	Q Seech	e 🔶 ULV Trai 😒 Mingray	+ En Darra S	Lastans	[jaw	ead -
				MPO Workflows		Q See		
		CompiD	Name	Description	Start Date	UID	User	Commen
		-	8917	19700 Internet-shor for 190305	2013-05-16 10:04	3455635 7504 4529 8576 (bool62553m	Adadam	
		52	RFT .	With parameters in 1933	2013-05-16 18:06	Outronal-Out-Alive Ballo- eeu-K01seba4	schadture	88
		-	Active (1740	import of gyro simulation results here #7515, 7,7	2013-03-14 20140	7440805-8101-428e- 0630-63x46/5x46/1	wight	

D MPO Team 2013

Left: selection screen for previously run workflows. Right: graphical presentation of a selected workflow

Impact:

- Increase the value of experimental & computational data across the diverse domains of the DOE/SC
- Paper presented in China at an IAEA meeting solicited substantial interest from attending scientists
- Operational system deployed for alpha/beta users that supports data provenance, metadata, and ontology with interactive tools for browsing and searching

3-year project started October 2012 Contact: D. Schissel (schissel@fusion.gat.com)

Tracking of the Data Lineage has not kept Pace with the Explosive Growth in the Amount of Data

- Provenance: from the French provenir "to come from"
 - Where did a piece of data come from & where was it used
- Questions that data provenance can answer
 - Diagnostic X calibration changed, what about my results?
 - What data/publications does this code bug effect?
- Associated questions that can be answered
 - Who does "Analysis Y" so I can ask for advice?
 - Who else is analyzing this shot in detail?
- DOE Digital Data Management Statement (July 2014)
 - All stages of the digital data lifecycle: Capture, analysis, sharing, and preservation
 - Data Management Plans now required

Goal: Support Data Tracking, Cataloging and Integration Across a Large Scientific Domain

- Create a data model, infrastructure, and set of tools
 - Automatically document workflow and data provenance from user scripts or any tools that process data
- For each data element: who, what, when, how, why
 - Connections & dependencies between data elements
 - Human or automated annotation
- Realistic applications starting with Fusion research
 - What scientists do today (e.g. shell, Python, IDL, MATLAB)
 - Vision: an API that can be applied to any tools used to process or manipulate data (experiments & HPC)
 - Not tied to a specific workflow engine

Approach: Focused Research to Build Tools for Real-World Science

- Integrated metadata, provenance & ontology research
 - General data model and conceptual framework
 - Directed Acyclic Graph: Logic of tasks performed
- Research on User Interfaces: Graphical Navigation
 - Efficiently browse and search for discovery of workflows, their components, and associated metadata
- Demonstrate on real-world fusion applications
 - Early deployment & agile development approach
 - Feedback and improve the design
- Extend to other sciences to validate our generality
 - Climate modeling and space sciences

The MPO System has 5 Basic Elements

• Data Objects

- Structured data inside/outside the MPO with pointers

Activities

- Create, move, or transmute data from one form to another

Connections

- Data objects & activities linked to represent a workflow

Comments

- Unstructured text with other attributes (e.g. who)

Collections

- List of related objects, activities, or workflows

Project Divided into 4 Distinct Elements

- API: primitives and languages for annotation
 - Useful/realistic for workflow steps data & metadata entry
- Database: metadata, provenance, ontology, workflow documentation
 - Capture all elements needed when a workflow executes
- UI: graphical navigation including real-time updates
 - Display, navigate, interact, browse the metadata catalog
 - Graphical display to explore workflow and provenance
- Users: Continual deployment/testing
 - Starting with EFIT, SWIM, and GYRO from fusion science

Functional MPO Infrastructure is based on Model-View-Controller (MVC) Concept

• Separates data representation & user's interaction with it

Views = UI & JSON from RESTful API Controller = Logic on client response or DB interaction

Present Schema Implementation

UI Vision: Integrated Interface for Accessing all Types of Data in a Scientific Environment

- One intuitive interface to accelerate scientific discovery
 - Data, data analysis methods, interactive vis, collaboration
 - Hypertext based and graphical
- Context enable navigation
 - Search, navigate, interactive access to MPO data
 - Search & navigation directed by domain specific ontology
- Graphical navigation
 - Flow chart, flow map, Timeline, Radial Tree map, news-map, tag-cloud maps
- Dynamic visualizations created from MPO data
 - Real-time feedback

MPO Software Stack Combines Open Source Solutions

- Both API server and Web UI server uses Flask a lightweight web application framework
 - Core components simple but extensible
 - Supports templates or HTML placeholders
 - Clean separation of components
- Twitter bootstrap to create standardized Web front-end
 - Hides Javascript complexity for easier development
 - Built-in responsive web page creation capability
- DAGs created by Graphviz software package
 - Dynamically created and embedded in HTML webpage

• MDSplus event services to create simple event server

Provides real-time update capabilities

MPO Web Site Operating with Ontology-based Search, Automatic Real-Time Graphics, Live Data Loading

Home Search Documentation

Lo	Legbook Entries (2) 👽	
>	> Setup and configuration files [+] add	

(+) new comment

Project's Final Year Goal is to Expand System's Depth and Expand the Reach of our Tools into other Sciences

- Alpha Users evaluating, beta users by end of CY14
 - Presentation at APS/DPP Nov. 2014 (attracting beta users)
- 1st Quarter CY15, push to a different science domain
 - Which domain depends on who can give us the time
- Hardening for Production
 - Formalize schema updates, separate development/production/user sandbox, develop/guarantee our persistent store
- Continue to evolve MPO UI and data schema
 - For example: UI evolving to handle large quantity of workflows, adding collections

Summary

- Substantial progress since the last PI meeting
 - API, data store/Ontology, & UI all evolved
- Production workflows have been MPO instrumented
 - DIII-D experimental analysis & SWIM simulations
- Our results validate our approach
 - Simple API to instrument basically any existing workflows
 - General data store and UI to store and navigate
- Include a new science domain moving forward
 - Yield feedback to allow iteration on the MPO framework

From Rich: "What Question Does Your Research Motivate You To Now Ask?"

- How to expand the reach of our MPO framework?
 - Across many science domains (ease of adoption, robust)
 - Federated system within a science (fast at large scales)
- Compatibility with W3C Standards (e.g. PROV)
 - How to import/export to MPO?
 - Can draw in this ecosystem (e.g. Annotation WG)?
- Efficient UI operation at large-scale
 - How to do better/faster
 Graphical Navigation?
- Provide rich data centric tools
 - Are there different UIs to the MPO data?

