Synthesis of Source-to-Sink High-Performance Flows

Nagi Rao, Brad Settlemyer, Josh Lothian Oak Ridge National Laboratory

Raj Kettimuthu, Venkat Vishwanath Argonne National Laboratory

Chase Wu University of Memphis

ASCR Next-Generation Networks for Science (NGNS) Principal Investigators Meeting

September 16-17, 2014, Rockville, MD

ORNL is managed by UT-Battelle for the US Department of Energy

Outline

Project Overview Test-Beds and Flow Composition Tests Network Interfaces, APIs XDD: Disk-to-Disk Transfers Transport profiles and protocols

Project Title:

Technologies and Tools for Synthesis of Source-to-Sink High-Performance Flows Collaboration: ORNL, ANL and UM

Multiple Multi-Bus Host-to-Host Disk/File Transfers

- file systems, storage systems, hosts
- SAN, LAN and WAN connections

Significant leverage from DOD projects and testbed

Project Tasks Overview

ORNL	Network Infrastructure and Path Provisioning: (Rao)							
	Establishing static and dynamic local and long-haul connections.							
	Flow Composition Methods: (Rao)							
	Synthesizing source-to-sink flows from constituent storage-network flows.							
	Storage and File Systems Methods: (Settlemyer)							
	Optimizing storage flows and their transition to network flows, generating storage							
	throughput profiles, and specialization for Lustre file system.							
	Multi-Core-Bus Host Systems Optimizations: (Lothian)							
	Optimal I/O card placements, IRQ de-confliction, thread and memory assignments,							
	and developing scripts.							
UM	Transport and Network Profiles tasks: (Wu)							
	Generation of throughput profiles for UDP, TCP, and RDMA protocol; and testing							
	in pair and integrated configurations.							
ANL	User and Application Tools: (Kettimuthu)							
	Integration of 1 modules of XDDC versions, developing interfaces and APIs, and							
	packaging and delivery of open-source transport tools within the team and to							
	broader community.							
	Integrated Test Designs and Execution: (Vishwanath)							
	Designing and coordinating integrated tests for XDDC versions, and							
	communicating the feedback for improving the modules, and specialization for							
	GPFS file systems.							

ORNL-ANL Connection: Under Progress

100Gbps Host and Edge Configurations: leveraged DOD testbed

40Gbps Flow Composition: physical connection

Four separate IP streams Achieved ~38 Gbps

loop	rtt	flow 1	flow 2	flow 3	flow 4	total	peak
	ms	Gbps	Gbps	Gbps	Gbps	Gbps	percent
local	0.17	9.89	9.89	9.88	9.89	39.55	98.88%
Nashville	8.24	9.03	9.65	9.55	9.73	37.96	98.85%
Atlanta	19.20	9.69	9.25	9.33	9.65	37.92	98.75%

TABLE I THROUGHPUT MEASUREMENTS ON PHYSICAL TESTBED CONNECTIONS.

40Gbps Emulation Testbed used for testing

- arbitrary connection lengths, not feasible over physical infrastructure
- corrections for differences from physical connections
- differential regression method

100G Flow Composition

- Ten separate IP streams with separate IP addresses
 - Five dual-port Myrinet 10GigE NIC connections to Nexus 7000 Separate VLAN connections for ten10GigE connections
- Host optimization Buffer tuning, IRQ de-confliction/balancing
 - Hosts have 48 processor cores
 - Buffer tuning enabled ~9.89 Gbps per flow NIC Interrupts handled by assigned processor cores in IRQ map
 - default IRQ map has overlaps, changed on reboots
 - detect overlaps and script IRQ maps with deconfliction
- Achieved ~95 Gbps locally and 72Gbps on ORNL-ATL link

Host Profiling: Automated several components •Inventory profile: CPUs, cores; Sockets, dyes, and PCIbusses; NICs, HCAs, HBAs

•Throughput profiling:

•Network throughput profile

•IO and file throughput profile

•composite profile

•Host Configuration:

•IRQ de-confliction; NIC/HCA/HBA placement •Storage and file system configuration:

•HBAs/HCAs; file systems, #threads, NUMA •Transport selection configuration:

•TCP/UPD; #flows/threads; NUMA placement

10*10 GigE 48-core HP servers

Aggregate TCP throughput – IRQ de-confliction/balancing

Utilizes outputs from ifconfig, lspci, lstopo and irq assignments

- provides summary: ip addr, name, MAC, socket, irq
- detects possible irq bottlenecks
 Next steps: eliminate dependence on ifconfig, utilize libdnet

82							1	sem	ien 0	ba	shi) n	Fator	phot	1103 /1006/bol	in 3.4			لعالها
Eile	Edit	t <u>V</u> ie	w	Se:	arch	1 10	ermin	hal	Tabs	He	lp							
[scre	en C): bas	h1	nra	0@b	ohre	03:~/	1000	i/boh	r3-4	2		×	3nr@pcwf0254	8:~			
Socke	t O	PUs:	0	4	я	12	16	20	24	28	32	36	40	44				
Socket	t 1	PUs:	1	5	9	13	17	21	25	29	33	37	41	45				
Socket	L 2	PUs:	2	6	10	14	18	22	26	30	34	38	42	46				
Socket	t 3	PUs:	3	7	11	15	19	23	27	31	35	39	43	47				
Host	NIC	: Sum	man	y:														CH-0572003856021
IP				nam	e			ma	C					socket	irq	socket:	pu	conflict
10.10	1.4	. 5		b05	-10	-a		00	:60:	dd:4	5:e4	:14		0	226	0:0	-	0
10.10	1.9	. 5		b05	-10	-b		00	:60:	dd:4	5:e4	:15		0	227	0:4	-	0
10.10	1.3	. 5		b05	-7-4	n.		00	:60:	1d:4	5:de	:46		3	232	3:3	-	0
10.10	1.8	. 5		b05	-7-1	0		00	:60:	dd:4	5:de	:47		3	233	3:7	-	0
10.10	1.2	. 5		b05	-4-	n.		00	:60:	dd:4	5:ee	:04		2	230	2:2	-	0
10.10	1.7	. 5		bos	-4-1	D		00	:60:	ld:4	5:ee	:05		2	231	2:6		0
10.10	1.1	. 5		b05	-2-	8		00	:60:	dd:4	5:e3	:74		1	228	1:25	-	0
10.10	1.6.	. 5		b05	-2-1	D		00	:60:	ld:4	5:e3	:75		1	229	1:29	-	0
10.10	1.0	. 5		b05	-1-	n.		00	:60:	did:4	5:de	:38		1	224	1:1		0
10.10	1.5.	. 5		b05	-1-1	D		00	:60:	ld:4	s:de	:39		1	225	1:5	-	0
Inraol	ebol	nr 05	hor	t p	rof	ilel	¢П											

Challenges

- Authentication to OSCARS is based on Grid security
- Requires a certificate issued by OSG CA (replacement for DOEGrids CA) or some other well-known CA
- Had to contact the network administrator at both sites to get the certificate added to the authorized user database
- Though it is a one-time step, it makes the process complex
- Once the above steps are done, circuit establishment is straightforward
- But the setup delay is about 1 minute

Network Services Interface

- Network Services Interface An open standard for dynamic circuit service interoperability.
- Reservation made in two phases.
- Phase I:
 - Resource availability is checked
 - If available resources are held, otherwise reservation request fails
- Phase II:
 - Requester either commits or aborts a held reservation
 - Timeout: If a requester does not commit for a certain period of time, a provider can timeout.
- Useful for co-reserving multiple resources.

User Tools and API

- Simple user interface connect, send, receive, close.
- Framework manages interactions between modules.
- 'Profilers' network-profiling tools such as TPG (UM), host profiling tools (ORNL and ANL), and storage profiling tools (ORNL).
- 'Protocols' TCP, UDP based.
- 'Flow composition & Optimization' Network & storage flows, protocol tuning, parameter selection.

XDD: Disk-to-Disk Data Transfer Tool

- XDD started as a file and storage benchmarking toolkit
 - Many storage tuning options
- Added a network implementation, python frontend, multi-host coordination, and NUMA tuning options
 - One major feature is XDD can leverage multiple NIC's from a single process to better schedule storage access
- Adding profiling capabilities to sweep relevant tuning parameters
 - Identify storage performance modes for pairing with network performance profiles

Storage Profiling Parameter Examples

- Issue Order "None"
 - Each thread issue I/O's without any ordering (often generates unstable performance)
- Issue Order "Serial"
 - Each request is issued in file order (high synchronization costs, but perfect streaming workload)
- Issue Order "Loose"
 - Each request is assigned in order, but allowed to complete in any order

Profiling Example

Opteron host, 3x 4Gbps FC HBA, 3x 7+1 Storage Array, 32MB requests

Multi-NIC Transfer with NUMA and Storage Order Tuning

Disk-to-disk transfer performance using XDD with no IRQ or NUMA tuning

Disk-to-disk transfer performance with network IRQ affinity tuning

Disk-to-disk transfer performance with tuned storage ordering and improved NUMA placements.

HP DL585 G7, 4x10Gbps NIC, 16x PCIe FusionIO (6.1 GB/s read 4.2 GB/s write)

XDDC: Composing XDD flows

- Network and storage tuning optimizations aren't always complementary
 - Network may prefer high number of streams
 - Storage may prefer low thread counts
- Leverage profiling information to gather more complete understanding of performance modes
- Identify *compatible* network and storage performance modes and develop compositions based on that data
 - Given multiple endpoints and transient effects, this isn't exactly easy

Transport Considerations

- Big data transfer in extreme-scale scientific applications requires end-toend stable and high-bandwidth network connections
- Transport protocols play a significant role in utilizing the bandwidth resource of such dedicated channels in HPNs
- High-performance transport protocols are being rapidly developed and deployed, but maximizing their throughput over complex high-speed connections is challenging
 - 1) Their optimal operational zone is affected by the configurations and dynamics of the network, the end hosts, and the protocol itself
 - 2) The default parameter setting does not always yield the best performance
 - 3) Application users, who are domain experts, typically do not have the knowledge to choose which transport protocol to use and which parameter value to set
- We propose a Transport Profile Generator (TPG) to characterize and enhance the end-to-end throughput performance of transport protocols
 - 1) Automate the tuning of various transport-related parameters including socket options and protocol-specific configurations
 - 2) Support multiple data streams and multiple NIC-to-NIC connections

TCP Profiling

- Testbed: an emulated long-haul connection using Cisco 3064 & HP 5406zl switches
- Summary: TCP Throughput Comparison averaged over 10 runs

Transport Profile Generator

• TPG Implementation:

- 1) Consist of a pair of client and server, using a TCP-based control channel and a number of multi-threaded protocol-specific (TCP- or UDP-based) data channels
- 2) Currently as a command-line tool, and will be integrated into XDDC with automatic parameter selection

• A Typical Profiling Process

- 1) Server starts listening on control channel
- 2) Client connects to server, and exchange control parameter with server
- 3) Client creates data streams on data channel, and connects them to server
- 4) Assign each data stream to an independent sending/receiving thread
- 5) Once a one-time profiling is completed, client and server exchange results
- 6) Client exits, and server cleans up and listens for next profiling

UDT Profiling

- Testbed: a local back-to-back 10Gbps link
- Summary: UDT throughput in response to different parameter settings

Packet Size

Average throughput vs. packet size. 1 stream, 120 seconds of transfer.

Number of streams

Average throughput vs. number of streams. 1MB UDT/UDP send/recv buffer, 8972B packet size, 89559B block size, 1 stream, 120 seconds of transfer.

Average throughput vs. block size

8972B packet size, 8956B payload size, 1 stream, 120 seconds of transfer. Different curves correspond to different UDT/UDP send/receive buffer sizes.

Average throughput vs. UDT/UDP send/recv buffer. 8972B packet size, 89559B block size, 1 stream, 120 seconds of transfer.

UDT Profiling

• Summary: throughput comparison between default UDT and TPG-tuned UDT

Index no.	Packet size (B)	Block size (B)	UDT sndbuf(M)	UDP sndbuf(M)	UDT rcvbuf(M)	UDP rcvbuf(M)	Perf. (Mbps)
1	1472	1455	10	1	10	1	450
2	1472	8955	10	1	10	1	1762
3	1472	65536	10	1	10	1	2487
4	1472	89559	10	1	10	1	2584
5	1472	89559	1	1	1	1	2810
6	1472	179119	1	1	1	1	2847
7	8972	89559	1	1	1	1	7216
8	8972	179119	1	1	1	1	8713
9	8972	179119	16	16	16	16	6300
10	8972	179119	32	32	32	32	6535

Throughput performance comparison between default UDT and TPG-tuned UDT: 120 seconds of transfer, 1 second sampling interval. (a) Average thruput; (b) Average RTT; (c) Instantaneous thruput measurements in exp 1 to 5; (d) Instantaneous thruput measurements in exp 6 to 10.

UDP Profiling: Multiple NIC-to-NIC UDP Flows

- Testbed: two HP hosts with ten 10GigE NICs
- Summary: severe losses with more than 4 NIC-to-NIC UDP flows

10*10 GigE 48-core HP servers

Conclusions

- Host profiling software modules first version
- XDD: disk-to-disk transport tool using default network connections
- Transport profiling and methods UDP profile under investigation
- Testing with physical and emulated connections

Next Steps

- Continued refinement of host profiling and configuration modules
- Network and disk flow matching and alignment of XDD
- Refinement of multiple NIC-to-NIC flow aggregations: TCP and UDP
- Testing over ORNL-ANL and ORNL 100G connections
- Aggregation of combinations of multiple 10G and 40G NIC flow aggregations: 3*40G; 2*40G+2*10G

"What question does your research motivate you to now ask?" Do combined advances in OpenStack, Open Systems, and Software Defined Infrastructures provide ready-to-use solutions for complex highperformance data flows? Or, do we need to develop/evolve them for this class of scenarios?