
Danila Oleynik (on behalf of BigPanDA team)

Outline

�  Introduction
�  PanDA in ATLAS
�  ASCR project

� BigPanDA 2014 achievements
� Summary

2

PanDA Workload management
system
�  PanDA project was started in Fall 2005

�  Production and Data Analysis system for ATLAS
�  Goal: An automated yet flexible workload management system (WMS)

which can optimally make distributed resources accessible to all users
�  Originally developed in US for US physicists

�  Adopted as the ATLAS wide WMS in 2008 (first LHC data in
2009) for all computing applications
�  The ATLAS experiment at the LHC - Big Data Experiment
�  ATLAS DDM manages ~150 PB of data, distributed world-wide at ~130

WLCG computing centers
�  Expected rate of data influx into ATLAS Grid ~40 PB of data per year
�  Thousands of physicists from ~40 countries analyze the data

3

PanDA WMS design goals
�  Achieve high level of automation to reduce

operational effort
�  Flexibility in adapting to evolving hardware and

network configurations
�  Support diverse and changing middleware
�  Insulate user from hardware, middleware, and

all other complexities of the underlying system
�  Unified system for central MC production, data

processing and user data analysis
�  Incremental and adaptive software

development

4

Key Features of PanDA
�  Workflow is maximally asynchronous
�  Pilot based job execution system

�  Condor based pilot factory
�  Payload is sent only after execution begins on CE
�  Minimize latency, reduce error rates

�  Central job queue
�  Unified treatment of distributed resources
�  SQL DB keeps state - critical component

�  Automatic error handling and recovery
�  Extensive monitoring
�  Modular design
�  HTTP/S RESTful communications
�  GSI authentication
�  Use of Open Source components

5

Jobs completed by PanDA per
month for ATLAS since 2010

6

PanDA’s Success
�  The system was developed by US ATLAS

for US ATLAS
�  Adopted by ATLAS Worldwide as

Production and Analysis system
�  It was proven that PanDA can manage in

excess of 1 million jobs per day
�  Adopted to evolution in ATLAS computing

model
�  PanDA is exascale now: 1.2 Exabytes of

data processed by PanDA in 2013

7

Next Generation “Big PanDA”
�  ASCR and HEP funded project “Next Generation Workload Management and

Analysis System for Big Data”. Started in September 2012.

�  Generalization of PanDA for HEP and other data-intensive sciences, and a wider
exascale community.

�  Project participants from ANL, BNL, UT Arlington

�  Alexei Klimentov – Lead PI

�  WP1 (Factorizing the core): Factorizing the core components of PanDA to
enable adoption by a wide range of exascale scientific communities

�  WP2 (Extending the scope): Evolving PanDA to support extreme scale
computing clouds and Leadership Computing Facilities

�  WP3 (Leveraging intelligent networks): Integrating network services and real-
time data access to the PanDA workflow

�  WP4 (Usability and monitoring): Real time monitoring and visualization
package for PanDA

8

Next Generation “Big PanDA”.
Collaborations
�  Through ASCR project, PanDA has

moved well beyond ATLAS
� Collaboration between ATLAS, ALICE,

nEDM experiments for efficient usage of
opportunistic resources, especially HPC
and LCF

�  LSST and AMS uses PanDA for
distributed data processing

� Other communities getting involved

9

WP1 Factorizing the core
�  New Code repository.

�  Migration from CERN SVN to GitHub
�  New build system
�  Distribution through RPMs

�  PanDA server improvements.
�  Split core and experiment specific packages
�  Installed dedicated instances for different facilities (now running 3 instances)

�  PanDA pilot improvements.
�  Core pilot has been refactored to a generic (VO independent) version;
�  VO specifics are handled as plug-ins;
�  Execution backends are handled as plug-ins

�  Multiple database backends.
�  Oracle database backend (ATLAS, AMS)
�  mySQL (running on EC2 PanDA server) – LSST, ALICE

�  New PanDA monitoring.
�  Redesigned
�  Refactored to ensure modularity

�  New PanDA instance with MySQL backend deployed in Amazon EC2
�  Instance tuned for multi-VO support

10

WP2 Extending the scope.
PanDA @ ORNL LCF.
�  Special features of running at LCF

�  Parallel file system shared between nodes.
�  Worker nodes have extremely limited connectivity
�  One-Time Password Authentication
�  Internal job management tool: PBS/TORQUE
�  One job occupy minimum one node (16 cores)
�  Limitation of number of jobs in scheduler for one

user
�  Using special data transfer nodes (high speed stage

in/out)
�  These features developed through ASCR-

BigPanDA, going beyond GRID’s and clouds

11

WP2 PanDA architecture for Titan

�  Pilot(s) executes on HPC interactive node
�  Pilot interact with local job scheduler to manage job
�  Data, produced on HPC automatically moves to external storage

12

Started works for integration with NERSC with using same architecture

WP2 Backfill on HPC

�  A lot of applications can effectively use a
single core

�  HPC is full, means that the system have
allocated all the cycles it is able to deliver
�  It is probably not all cycles available
�  Just as there is room for sand in the jar of rocks,

there’s
�  room for “simple” jobs on even a “full” HPC

13

WP2 PanDA pilot with backfill mode

�  PanDA pilot algorithm has been adopted to use backfill
information and to submit jobs with optimal parameters
�  Pilot uses SAGA API from complimentary ASCR project

�  Special middleware which allows to execute bunch of
single node/single threaded workloads transparently,
as MPI multi-node workloads, was implemented

�  During functional test of Pilot on Titan with realistic
payloads (ATLAS and ALICE), efficiency of usage of
supercomputer was increased by 2,2%

�  We face very small waiting time (avg 70 sec.) for jobs,
which ran in backfill mode with optimal parameters

14

WP3 Leveraging intelligent networks

�  Why WMS should care about networking?
�  Distributed workload management systems need to transfer data

(or use direct access) both for input and output
�  Data transfer/access is done asynchronously
�  Data transfer/access systems can be optimized for network

performance – PanDA use these enhancements
�  But network information can also be used directly in workflow

management in PanDA at a higher level
�  Goal for PanDA

�  Direct integration of networking with PanDA workflow – never
attempted before for large scale automated WMS systems

�  Main PanDA use cases
�  Use network information for cloud selection
�  Use network information for job assignment
�  Use network information for site selection

15

WP3 PanDA and Networking. Concept.

�  PanDA as workload manager
�  PanDA automatically chooses job execution site

○  Multi-level decision tree – task brokerage, job brokerage,
dispatcher

○  Also manages predictive future workflows – at task definition,
PD2P (PanDA Dynamic Data Placement)

�  Site selection is based on processing and storage requirements
○  Can we use network information in this decision?
○  Can we go even further – network provisioning?

�  Further – network knowledge used for all phases of job cycle?
�  Network as resource

�  Optimal site selection should take network capability into
account
○  We do this already – but indirectly using job completion metrics

�  Network as a resource should be managed (i.e. provisioning)
○  We also do this crudely – mostly through timeouts, self throttling

16

WP3 Network Metrics Implementation.

�  PanDA WMS was extended with special
components:
�  Collecting network metrics from different providers.
�  Organized collected data and arrange it in proper format

�  Brokerage takes these data into account for
distribution of jobs to sites

�  Initial testing showed significant reduction of jobs
waiting time

17

WP3 Reduction of waiting time

18

WP4 Usability and monitoring

� Complete analysis of previous
implementation of PanDA monitoring,
showed that this component should be
designed from scratch

� New PanDA monitoring web application
was developed based on Django
framework
�  Allows rapid development and easy

extension

19

WP4 Usability and monitoring.
New PanDA monitoring
�  http://bigpanda.cern.ch
�  http://pandawms.org

20

Summary
Significant progress in all work packages. The project is on schedule

�  WP1 Factorizing the core:

�  New GitHub repository is in place. New build system.
�  New PanDA server distribution and installation mechanism via rpm
�  Code refactoring well underway for all components
�  Dedicated PanDA server instance running on EC2 with MySQL backend

�  WP2 Extending the scope:
�  Successful integration of PanDA with Titan at OLCF
�  Multiple ATLAS and ALICE workloads ported to Titan
�  Integration of unused resources harvesting capability (“backfill”) in

PanDA pilot
�  Port of the setup developed on Titan started at NERSC

�  WP3 Leveraging intelligent networks:
�  First ever usage of network metrics in distributed workload management

system
�  Significant reduction of waiting time for jobs

�  WP4 Usability and monitoring:
�  New PanDA monitoring

21

Backup. PanDA @ GCE

22

�  In 2013 PanDA was successfully tested with Google
Compute Engine
�  We ran for about 8 weeks
�  Very stable running on the Cloud side. GCE was rock solid.
�  We ran computationally intensive jobs
�  Physics event generators, Fast detector simulation, Full detector

simulation
�  Completed 458,000 jobs, generated and processed about 214M

events

Backup. PanDA@OLCF.
Functional testing results (June-July)
�  In May 2014 we ran first 24 hour continuous job

submission test via PanDA@EC2 with pilot in backfill
mode, with MPI wrappers for two workloads from ATLAS
and ALICE
�  Stable operations
�  ~22k core hours collected in 24 hours
�  Observed encouragingly short job wait time on Titan ~4 minutes

�  Ran second 24 hour test in July 2014, with pilot
modifications that were based on information obtained
from the first test
�  Limit on number of nodes was removed in pilot
�  Job wait time limit introduced – 5 minutes. Simple “kill job”
�  ~145k core hours collected
�  Average wait time ~70 sec
�  Observed IO related effects that need to be understood better

23

Backup. PanDA@OLCF.
Functional testing results (August)
�  Testing algorithm for internal rescheduling of payload in pilot

�  Pilot gets free resource information from Titan’s resource manager
�  Forms job parameters according to free resources and queue policies
�  Submits job to PBS
�  If job exceeds wait time limit, pilot cancels the job and repeats the cycle

�  Wait time limit for a job in PBS was set to 2 minutes
�  Ran continuously for ~10 hours
�  Highly CPU bound payload to avoid IO issues
�  Were able to collect ~ 200,000 core hours
�  Max number of nodes per job – 5835 (93360 cores)

�  Close to entire Grid in size!
�  Used ~2.3% of all Titan core hours or ~14.4% of free core hours

24

