Oleynik (on behalf of BigPanDA team)

BIGPANDA:
NEXT GENERATION

WORKLOAD
MANAGEMENT SYSTEM

FOR BIG DATA
AN

Outline

Introduction
PanDA in ATLAS
ASCR project

BigPanDA 2014 achievements
Summary

PanDA Workload management
system

PanDA project was started in Fall 2005
Production and Data Analysis system for ATLAS

Goal: An automated yet flexible workload management system (WMS)
which can optimally make distributed resources accessible to all users

Originally developed in US for US physicists
Adopted as the ATLAS wide WMS in 2008 (first LHC data in
2009) for all computing applications

The ATLAS experiment at the LHC - Big Data Experiment

ATLAS DDM manages ~150 PB of data, distributed world-wide at ~130
WLCG computing centers

Expected rate of data influx into ATLAS Grid ~40 PB of data per year
Thousands of physicists from ~40 countries analyze the data

PanDA WMS design goals

Flexibility in adapting to evolving hardware and
network configurations

Support diverse and changing middleware

Unified system for central MC production, data
processing and user data analysis

Key Features of PanDA

Workflow is maximally asynchronous

Pilot based job execution system
Condor based pilot factory
Payload is sent only after execution begins on CE
Minimize latency, reduce error rates

Central job queue
Unified treatment of distributed resources
SQL DB keeps state - critical component

Automatic error handling and recovery
Extensive monitoring

Modular design

HTTP/S RESTful communications

GSI authentication

Use of Open Source components

Jobs completed by PanDA per

month

35,000,000
30,000,000
25,000,000
20,000,000
15,000,000
10,000,000

5000,000

Apr 2010

[USA

M FRANCE

M CANADA

[T JAPAN

W RUSSIA

M CZECH REPUBLIC
W ROMANIA

M CHINA

[0 TURKEY

M CHILE

Oct 2010

Completed jobs

for ATLAS since 2010

244 Weeks from Week 00 of 2010 to Week 36 of 2014

Apr 2011 Oct 2011 Apr 2012 Oct 2012

UK

M SWITZERLAND

M SPAIN

[DENMARK, FINLAND, NORWAY, SWEDEN
M SLOVENIA

M POLAND

W AUSTRALIA

M SLOVAKIA

M SOUTH AFRICA

M GREECE

Apr 2013 Oct 2013 Apr 2014

I GERMANY
HITALY
BNETHERLANDS
[H TAIWAN
MNone
MISRAEL
MPORTUGAL
W AUSTRIA
[TIRELAND

... plus 4 more

Maximum: 33,475,321 , Minimum: 0.00 , Average: 21,623,518 , Current: 5,923,358

PanDA’s Success

The system was developed by US ATLAS
for US ATLAS

Adopted by ATLAS Worldwide as
Production and Analysis system

It was proven that PanDA can manage In
excess of 1 million jobs per day

Adopted to evolution in ATLAS computing
model

Next Generation “Big PanDA”

ASCR and HEP funded project “Next Generation Workload Management and
Analysis System for Big Data”. Started in September 2012.

Generalization of PanDA for HEP and other data-intensive sciences, and a wider
exascale community.

Project participants from ANL, BNL, UT Arlington
Alexei Klimentov — Lead Pl

Factorizing the core components of PanDA to
enable adoption by a wide range of exascale scientific communities

Evolving PanDA to support extreme scale
computing clouds and Leadership Computing Facilities

Integrating network services and real-
time data access to the PanDA workflow

Real time monitoring and visualization
package for PanDA

Next Generation “Big PanDA".
Collaborations

Through ASCR project, PanDA has
moved well beyond ATLAS

Collaboration between ATLAS, ALICE,
NEDM experiments for efficient usage of

opportunistic resources, especially HPC
and LCF

LSST and AMS uses PanDA for
distributed data processing

Other communities getting involved

Factorizing the core

New Code repository.
Migration from CERN SVN to GitHub
New build system
Distribution through RPMs
PanDA server improvements.
Split core and experiment specific packages
Installed dedicated instances for different facilities (now running 3 instances)
PanDA pilot improvements.
Core pilot has been refactored to a generic (VO independent) version;
VO specifics are handled as plug-ins;
Execution backends are handled as plug-ins

Multiple database backends.
Oracle database backend (ATLAS, AMS)
mySQL (running on EC2 PanDA server) — LSST, ALICE

New PanDA monitoring.
Redesigned
Refactored to ensure modularity

New PanDA instance with MySQL backend deployed in Amazon EC2
Instance tuned for multi-VO support

Extending the scope.
PanDA @ ORNL LCF.

Special features of running at LCF
Parallel file system shared between nodes.
Worker nodes have extremely limited connectivity
One-Time Password Authentication
Internal job management tool: PBS/TORQUE
One job occupy minimum one node (16 cores)

Limitation of number of jobs in scheduler for one
user

Using special data transfer nodes (high speed stage
in/out)

These features developed through ASCR-
BigPanDA, going beyond GRID’s and.clouds

PanDA architecture for Titan

Pilot(s) executes on HPC interactive node
Pilot interact with local job scheduler to manage job
Data, produced on HPC automatically moves to external storage

Oak Ridge LCF
Interactive node Multicore WN
Job scheduler h
- > Multicore WN

"Pilot's
launcher"
- Backfill
BigPanDA info > Multicore WN I|

PanDA server

Monitoring
Computing
Job

I ransfer > Multicore WN
el o> Multicore WN
Storage I

Data Transfer I
Node (DTN) Shared FS / HPC Scratch

Danila Oleynik, Sergey Panitkin 2013-2014

Data (gridFTP)

Started works for integration with NERSC with using same architecture

Backfill on HPC

A lot of applications can effectively use a
single core

HPC is full, means that the system have
allocated all the cycles it is able to deliver

It is probably not all cycles available

Just as there Is room for sand in the jar of rocks,
there’s

room for “simple” jobs on even a “full’ HPC. ==
f%“’

PanDA pilot with backfill mode

PanDA pilot algorithm has been adopted to use backfill
Information and to submit jobs with optimal parameters

Pilot uses SAGA API from complimentary ASCR project

Special middleware which allows to execute bunch of
single node/single threaded workloads transparently,

as MPI multi-node workloads, was implemented

During functional test of Pilot on Titan with realistic
payloads (ATLAS and ALICE), efficiency of usage of
supercomputer was

We face very small waiting time (avg 70 sec.) for jobs,
which ran in backfill mode with optimal parameters

Leveraging intelligent networks

Why WMS should care about networking?

Distributed workload management systems need to transfer data
(or use direct access) both for input and output

Data transfer/access is done asynchronously

Data transfer/access systems can be optimized for network
performance — PanDA use these enhancements

But network information can also be used directly in workflow
management in PanDA at a higher level

Goal for PanDA

Main PanDA use cases
Use network information for cloud selection

Use network information for job assignment
Use network information for site selection

PanDA and Networking. Concept.

PanDA as workload manager

PanDA automatically chooses job execution site

o Multi-level decision tree — task brokerage, job brokerage,
dispatcher

o Also manages predictive future workflows — at task definition,
PD2P (PanDA Dynamic Data Placement)

Site selection is based on processing and storage requirements
o Can we use network information in this decision?

o Can we go even further — network provisioning?

Further — network knowledge used for all phases of job cycle?

Network as resource

Optimal site selection should take network capability into
account

o We do this already — but indirectly using job completion metrics
Network as a resource should be managed (i.e. provisioning)
o We also do this crudely — mostly through timeouts, self throttling

Network Metrics Implementation.

PanDA WMS was extended with special
components:

Collecting network metrics from different providers.
Organized collected data and arrange it in proper format

Brokerage takes these data into account for
distribution of jobs to sites

Initial testing showed significant reduction of jobs
waiting time

Reduction of waiting time

Performance of Tasks
M # of Local Jobs

i # of Remote Jobs

M Local Jobs Wait Time

M w M Remote Jobs Wait Time

553 566 568 569 570 571 573 574 598 605 615 617 622 640 647 655 662 665 668 681
Task Number

|

1t
|

il
|
|

Usability and monitoring

Complete analysis of previous
iImplementation of PanDA monitoring,
showed that this component should be
designed from scratch

New PanDA monitoring web application
was developed based on Django
framework

Allows rapid development and easy
extension

ATLAS PanDA monitor

Usability and monitoring.
New PanDA monitoring

ATLAS PanDA monitor Dashboards Jobs Tasks Errors Users Sites incidents Search Prodsys Services VO He

Dastboards

PanDA analysis dashboard, last 12 hours. Query params:

‘mnalysis task sumenary by cloud, last 7 days Hover over state name to see full name. Thsk state documentstion

Cloud nTask

Cloud / Site summary of analysis jobs For a description see below

Clowd

All clouds

reg

at

oy

Status | nJobs | nPilots

onéne
onéine
online
ontine
onine
onsne
ondno
onine

524851

1
28441
7195
103820
16829
FH002
22685
38629
18327
48

20m13

done

=

fiish | sbetg | abrd

Al jobs

Analysis jobs

Production jobs - Cloud view

Production jobs - Region view

Working group jobs

Analysis tasks

Search

PanDA job 10 or name * 20140618: Job attempte off for user Page, JED! jobs. Not meaninghul in JEDK
* 20140615: Task attribute summary added 10 User page
* 20140817: Output container list added 10 task detad page
* 20140817: Suppont clariied. Use DAST ist, as aver, for dist analysis support
* 20140817; curl retrieval of json task data. Search on curl in the help
" 2" other non-retry) jobs supported as a relationship type
Wetime 3min for all pages, documented in footer. Repon lssues
' help w dated help page
Geneeated 2014-00-10 2307 UTC >r0dys1 tasknames in eror summary
nanes (huge and siow) removed om non-task dashboards
ames in task Sst, detall pages ik 10 state doc

Batch ID

starting | running | holding | transferring

|

Summary

Significant progress in all work packages. The project is on schedule

WP1 Factorizing the core:

New GitHub repository is in place. New build system.

New PanDA server distribution and installation mechanism via rpm

Code refactoring well underway for all components

Dedicated PanDA server instance running on EC2 with MySQL backend
WP2 Extending the scope:

Successful integration of PanDA with Titan at OLCF

Multiple ATLAS and ALICE workloads ported to Titan

Integration of unused resources harvesting capability (“backfill”) in
PanDA pilot

Port of the setup developed on Titan started at NERSC
WP3 Leveraging intelligent networks:

First ever usage of network metrics in distributed workload management
system

Significant reduction of waiting time for jobs

WP4 Usability and monitoring:

New PanDA monitoring

Backup. PanDA @ GCE

In 2013 PanDA was successfully tested with Google
Compute Engine

We ran for about 8 weeks
Very stable running on the Cloud side. GCE was rock solid.
We ran computationally intensive jobs

Physics event generators, Fast detector simulation, Full detector
simulation

Completed 458,000 jobs, generated and processed about 214M
events

m nfinished::457.7 K
W nfailed::22.3 K

Backup. PanDA@OLCEF.
Functional testing results (June-July)

In May 2014 we ran first 24 hour continuous job
submission test via PanDA@EC2 with pilot in backfill
mode, with MPI wrappers for two workloads from ATLAS
and ALICE

Stable operations

~22k core hours collected in 24 hours

Observed encouragingly short job wait time on Titan ~4 minutes

Ran second 24 hour test in July 2014, with pilot
modifications that were based on information obtained
from the first test

Limit on number of nodes was removed in pilot

Job wait time limit introduced — 5 minutes. Simple “kill job”

~145k core hours collected

Average wait time ~70 sec

Observed IO related effects that need to be understood better

Backup. PanDA@OLCEF.
Functional testing results (August)

Testing algorithm for internal rescheduling of payload in pilot
Pilot gets free resource information from Titan’s resource manager

Forms job parameters according to free resources and queue policies
Submits job to PBS

If job exceeds wait time limit, pilot cancels the job and repeats the cycle
Wait time limit for a job in PBS was set to 2 minutes
Ran continuously for ~10 hours
Highly CPU bound payload to avoid IO issues
Were able to collect ~ 200,000 core hours

Max number of nodes per job — 5835 (93360 cores)
Close to entire Grid in size!

Used ~2.3% of all Titan core hours or ~14.4% of free core hours

