

Virtualized Network Control: SDN Research

Inder Monga
Division Deputy, Scientific Net. Div.
CTO, ESnet

DOE NGNS PI Meeting
Washington DC, September 17th, 2014

Goal of SDN Research

- Focus on ESnet use-cases for the next-generation network, ESnet6
 - Multi-layer, multi-domain, multi-vendor network
- Target science use-cases and applications especially large science flows (elephant flows)
- Influence the larger SDN industry to be aware of the science requirements
 - Enhance OpenFlow to meet those requirements

SDN Investigations for this project

ONS = Open Networking Summit SDN = Software Defined Networking

Network Virtualization 'One Switch' SC12, Nov 2012

New Network Abstraction: "WAN Virtual Switch"

Simple, Multipoint Services, Programmable

Configuration abstraction:

- Expresses desired behavior
- Hides implementation on physical infrastructure

It is not only a concept, but prototype Demonstration with NEC and Ciena

"OpenFlow Programmable" by end-sites

World's first Transport SDN, Dec 2012

OpenFlow paradigm extended to L1/λ

- No uniform way to manage Multi-vendor, Multi-layer networks or multi-domain optical bypass
 - Packet and Optical devices managed in totally different ways
 - Multi-vendor networks are islands
 - No global topological visibility
 - GMPLS and vendor-specific hacks needed in current approach

Packet World

- Connectionless
- Enterprise origins
- Dynamic flows
- Inband control plane
- Numerous distributed CP solutions
- Monolithic, closed systems

Transport World

- Connection (circuit) oriented
- Service provider origins
- Static pipes
- EMS/NMS + Cross-connect paradigm
- Nascent CP (GMPLS)
- Open, programmable systems

Transport SDN Demonstration

- SDN Controller communicating with OTS via OpenFlow extensions
- Bandwidth on Demand application for Big Data RDMA transport
- 3 physical transport path options (with varying latencies)
- Implicit & explicit provisioning of 10GbE/40GbE services demonstrate

ESnet

SDX REANNZ/ ESnet, ONS, March 2013

Demonstrated SDN-Router @ Open Network Summit, March 2013

Front-Line Assembly

DEMO

First international BGP peering using SDN in production between two national-scale network providers

- Innovative FIB compression enables using commodity OpenFlow switches for peering
- Leverages community open-source packages.
 RouteFlow and Quagga
- Collaboration with REANNZ and Google
- Live SDN BGP peering across the Pacific!

Demonstration Team:
Google Network Research – Josh Bailey, Scott Whyte
REANNZ – Dylan Hall, Sam Russell, James Wix, Steve Cotter
ESnet – Inder Monga, Chin Guok, Eric Pouyoul, Brian Tierney
Acknowledgements - Joe Stringer

Results

- ~40% FIB Compression accomplished
- 13215 uncompressed routes, 7757 compressed routes

Software-Defined Exchange (SDX)

March 2013

Treehouse Project

REANNZ/ESnet/Google)

April 2013

SDX: A Software Defined Internet Exchange

Nick Feamster[†], Jennifer Rexford^{*}, Scott Shenker[‡], Dave Levin^o, Russ Clark[†], Josh Bailey^{*} * Google, [†] Georgia Tech, ^o University of Maryland, ^{*} Princeton University, [‡] UC Berkeley

December 2013

Operationalizing SDN: A multi-agency program review

August 2014

SDX: A Software Defined Internet Exchange

Arpit Gupta[†], Laurent Vanbever*, Muhammad Shahbaz[†] Sean P. Donovan[†], Brandon Schlinker[‡], Nick Feamster[†], Jennifer Rexford* Scott Shenker[¢], Russ Clark[†], Ethan Katz-Bassett[‡] [†]Georgia Tech *Princeton University *UC Berkeley [‡]Univ. of Southern California

What is a 'Software-Defined Exchange'?

A range of SDX ideas and use cases

Layer 3 BGP / Policies Layer 2 Ethernet circuits

SDN Multi-domain Software Defined Infrastructure

Image from SDX NSF workshop report
Washington DC, June 2014

- SDX =
 - New way to build an Internet Exchange Point (IXP)
 - New way to build a Layer 2 GOLE
 - New approach for multi-domain services
 - New approach to SDI/Network Functions Virtualization
- ΣSDX = New way of building software-defined networks?

Multi-domain SDXs*

Washington DC, June 2014

14

Multilayer Transport SDN, October 2013

The hidden multi-layered infrastructure

GMPLS, TL1

Can we manage all layers using a unified abstraction?

Proprietary
Manual Operation

Distinct TCP Flows vs. Utilization

Multi-layer SDN

Enabling predictable application performance

Optical Transport Network

T = 0: Only small flows

T = 30: Large data transfer started

T = 55: Large data transfer offloaded to dynamically allocated circuit

NGNS PI meeting

Funding and Research Impact

Papers published

Best Student Paper Award

- "Traffic Optimization in Multi-Layered WANs using SDN", Hot Interconnects 2014
 - H. Rodrigues*, I. Monga†, A. Sadasivarao, S. Syed, C. Guok†, E. Pouyoul†, C. Liou and T. Rosing*
- "Open Transport Switch A Software Defined Networking Architecture for Transport Networks", ACM SIGCOMM HotSDN Workshop, August 17, 2013
 - Abhinava Sadasivarao, Sharfuddin Syed, Chris Liou, Ping Pan, Andrew Lake, Chin Guok, Inder Monga
- "Software Defined Networking for big-data science", Super Computing 2012,
 November 11, 2012
 - Inder Monga, Eric Pouyoul, Chin Guok
 - Paper and presentation at SC
- Many talks at conferences
 - OFC, OnVector, Globecom, HotSDN, Hot Interconnects, NSF workshops...

Funding and Research Impact

- Industry and R&E collaborations
 - Ciena and NEC
 - Network Virtualization demonstration
 - Infinera
 - Worlds' first Transport SDN demonstration
 - REANNZ/Google Network Research (and now SANREN)
 - Software-Defined Exchanges, SDN-based router
 - Brocade and Infinera
 - Multi-Layer SDN

Funding and Research Impact

- Industry Impact
 - Optical Transport Working group ratified in ONF after demonstration, that resolved a lot of open questions on need and viability of this approach
 - Nominated by Industry participants to be "ONF Research Associate" –
 three companies sponsored (independently of each other)
 - Software-Defined Exchanges (SDX), an important recommendation of the December 'Operationalizing SDN' report and part of NSF's IRNC proposal
 - Multi-layer SDN demo featured at SDNCentral as their Demo Friday

What questions does our research motivate us to ask?

- End-to-end remains difficult because service guarantees have to be consistent across all the domains- describing policy (and dissemination)
- Lack of a good language to describe complex policy
 - E.g N can only use X b/w on links 1-3 with specific on-peak/off-peak rates on weekdays)
- Negotiation of resources, especially multi-domain can be non-trivial due to scope and potentially large number of variables
- What are the right abstractions other than a point-to-point [virtual] link that science applications will find useful?
- Operationalizing SDN what are the basic manageability features needed before SDN can become production ready?

