

Concerted Flows: Infrastructure for Terabit/s Data Transfer

Raj Kettimuthu, Eun-Sung Jung, Venkatram Vishwanath, Steve Tuecke, Mark Hereld, Mike Papka, Bob Grossman and Ian Foster

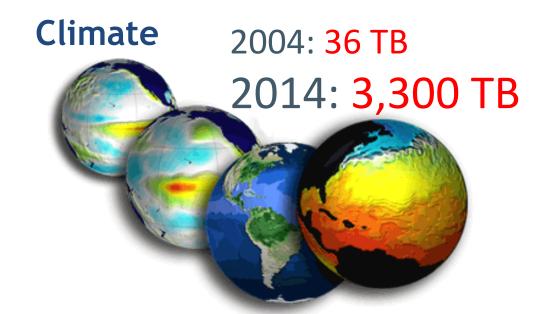
Exploding data volumes

Astronomy

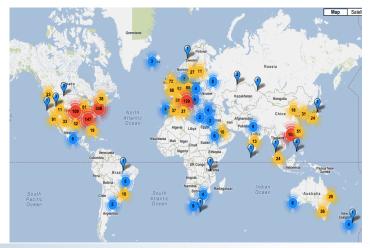
MACHO et al.: 1 TB

Palomar: 3 TB

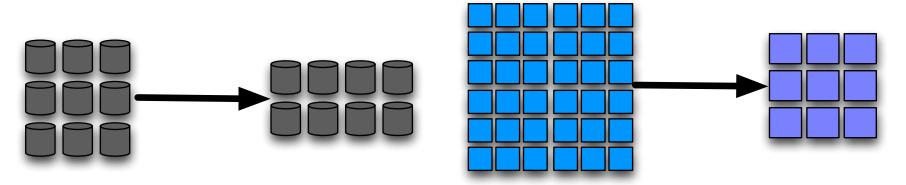
2MASS: 10 TB


GALEX: 30 TB

Sloan: 40 TB


Pan-STARRS:

40,000 TB



Genomics

10⁵ increase in data volumes in 6 years

Data movement trends

Disk-to-Disk Transfers

Memory-to-Memory Transfers

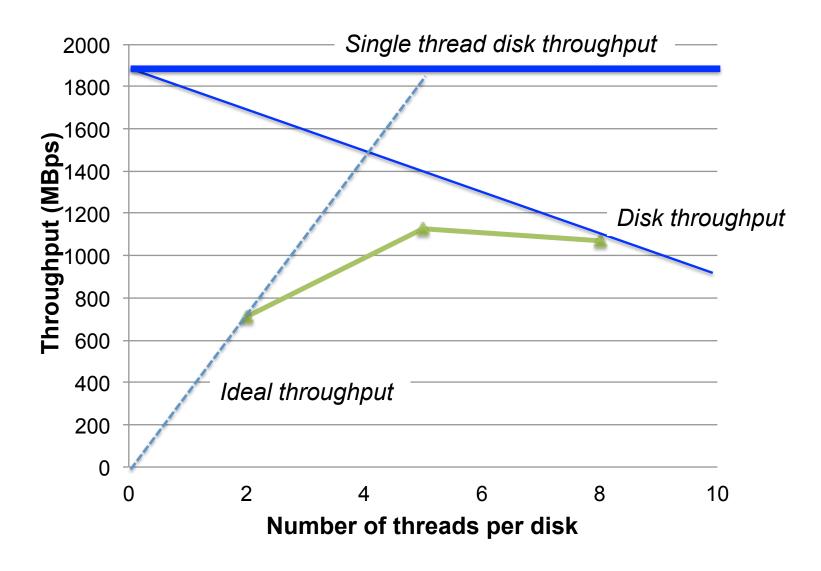
Disk-to-Memory Transfers

Memory-to-Disk Transfers

Data Movement is being increasingly characterized by Parallel M-to-N Data Flows

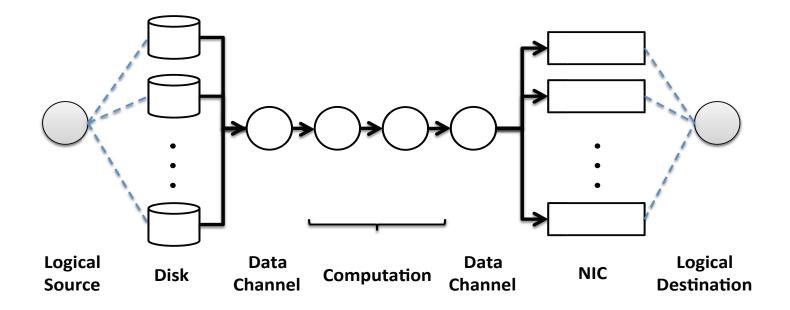
Characteristics of application flows

Арр	Type of Flow	# of Flows	BW	Latency	Burstine ss	Size	Protocol
Globus Online	Data	1 per node	High	N	Υ	Large	TCP, UDT
	Control	1 per session	Low	Υ	Υ	Small	ТСР
APS	Data	1 per detector	High	N	Υ	Large	ТСР
	Control	1 per app	Low	Υ	Υ	Small	TCP
FLASH Simulation- time Analysis	Data	1 per core	High	N*	Υ	Variable	TCP, RDMA
	Control	1 per app	Low	Υ	У	Small	TCP, RDMA
ENZO Remote Viz	Data	1 per display	High	Y	N	Large	TCP, UDP
	Control	1 per app	Low	Υ	Υ	Small	TCP


A mechanism to characterize and model an application's data movement behavior will be critical to better architect future networks

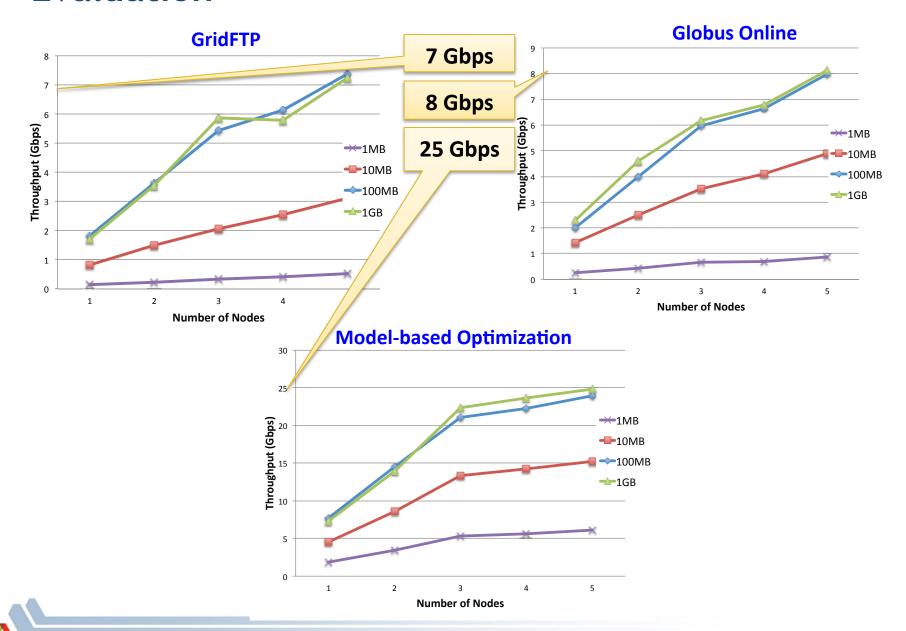
Concerted flows

- Problem: Traditional data transfer mechanisms fail to scale, fail to satisfy diverse applications needs
- Goal: Develop new tools that are
 - Adaptive: Leverages the characteristics of various components in the end-to-end path, feedback from network agents etc. to optimize transfers
 - Composable: Captures the diverse flow characteristics and requirements of applications
- Results: Tools that optimize individual transfers, efficient scheduling of large number of transfer requests
 - Model based approach for component-specific optimization
 - Data transfer kernels to capture transfer patterns of applications
 - Demonstrated near real-time data movement with 2 applications


Component-specific optimization

Disk-to-disk data transfer: graph model

- The system is modeled as a directed data flow graph:
 - A node indicates a physical system entity or a software entity.
 - A edge indicates a connectivity between two entities in terms of data flow.
 - Two attributes are assigned on an edge.
 - Capacity/Bandwidth: The maximum amount of data flow on the edge
 - Cost: CPU cost

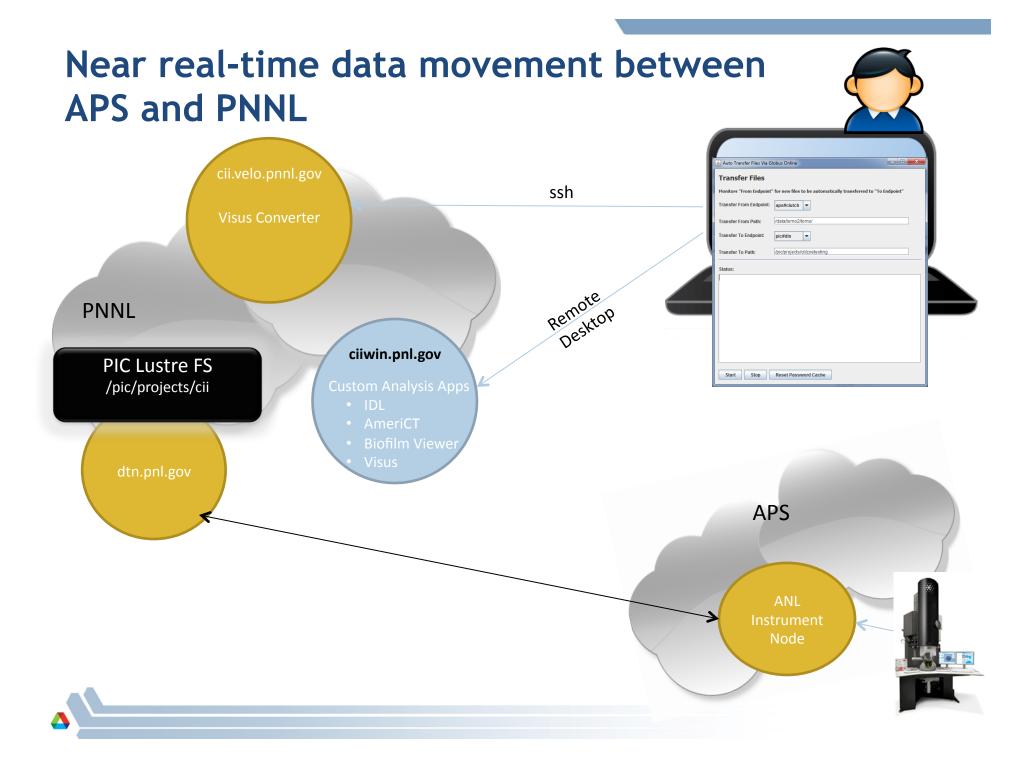


Model accuracy with and without perfSONAR data

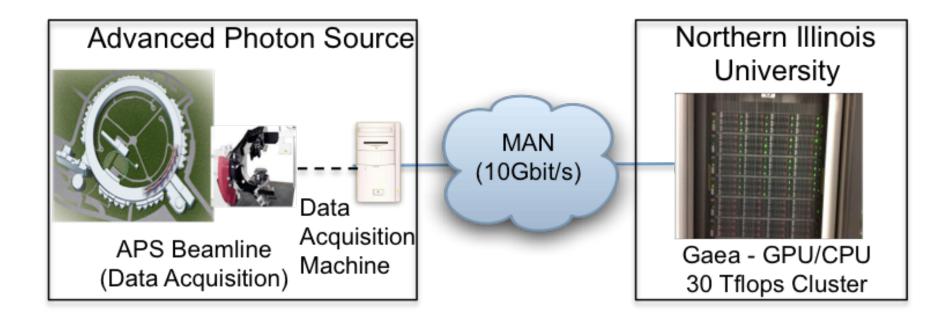
Node	Training Error (%)	Validation Error (%)
Gordon	14.4	13.4
Mason	14.1	13.6
NCAR	10.9	14.7
Blacklight	14.2	13.8
Kraken	13.4	14.7

Node	Training Error (%)	Validation Error (%)
Gordon	11.2	10.6
Mason	10.8	11.6
NCAR	9.7	12.2
Blacklight	11.2	10.8
Kraken	10.4	11.3

Evaluation


Data transfer skeletons

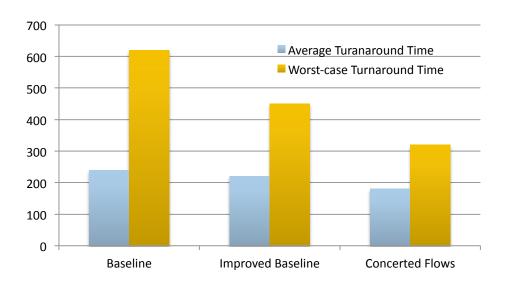
```
:InFile = 100 // in MB
   ::InFileRate = 100 // in MB/s
    :OutFile = 10240 // in MB
4. :N = 50
5. def main()
6.
     :InFile ::InFileRate infile[N]
7.
     :OutFile outfile
8.
9.
     call data_gen(infile)
     Transfer infile to A
     for all g = 0:N
12. {
      call reconstruct(infile, outfile)
13.
14.
15.
      Transfer outfile to B
16.
      call analysis(outfile)
17. }
```

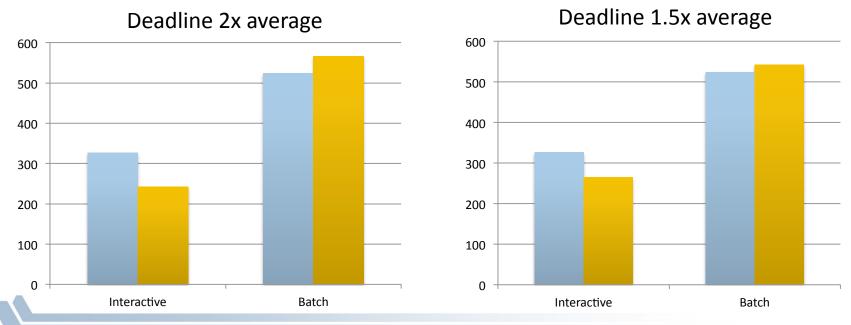

Each file is 100MB and it generates 50 files at 100 MB/s rate.

Reconstruction is done with 50x100MB files, and 10GB file is generated.

Analysis is done on the 10GB file.

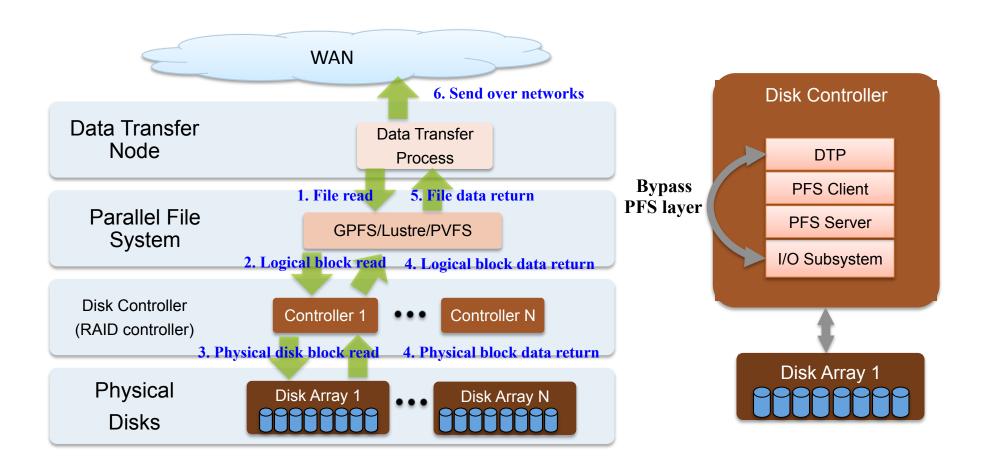
Near real-time data movement between APS and NIU




Scheduling transfers

- Maximize resource utilization and reduce slowdown
 - Adaptively queue and adjust concurrency
 - Use both models and recent observed behavior
- Transfers have different requirements and constraints
 - Time constraints near real time to highly flexible
 - Loss tolerance, rate requirements
- Objective account requirements to improve overall user experience
- Consider 2 job types batch and interactive
 - Exploit relaxed deadlines of batch jobs

Results


Publications

- E. Jung, R. Kettimuthu, and V. Vishwanath, "Cluster-wise Disk-to-Disk Transfer with Data Compression over Wide-Area Networks," Special Issue of JPDC, 2014.
- Eun-Sung Jung, and Rajkumar Kettimuthu, "Data-intensive Computing on the Cloud: State-of-the-art, Challenges, and Opportunities", accepted to IEEE Computer (SCI), 2014.
- K. Maheshwari, E. Jung, J. Meng, V. Vishwanath, and R. Kettimuthu, "Improving Multisite Workflow Performance Using Model-based Scheduling," ICPP'14, Sep'14.
- R. Kettimuthu, G. Vardoyan, G. Agrawal and P. Sadayappan, "Modeling and Optimizing Large-Scale Wide-Area Data Transfers," CCGrid2014, May 2014.
- E. Jung, R. Kettimuthu and V. Vishwanath, "Toward optimizing disk-to-disk transfer on 100G networks," IEEE ANTS 2013, Dec. 2013.
- E. Jung, K. Maheshwari and R. Kettimuthu, "Pipelining/Overlapping Data Transfer for Distributed Data-Intensive Job Execution," 2013 ICPP Workshops Oct. 2013.
- K. Maheshwari, E. Jung, J. Meng, V. Vishwanath and R. Kettimuthu, "Model-Driven Multisite Workflow Scheduling Based on Task-Resource Adaptation, IEEE Cluster 2013, Sep. 2013.
- D. Gunter, R. Kettimuthu, E. Kissel, M. Swany, J. Yi, J. Zurawski, "Exploiting Network Parallelism for Improving Data Transfer Performance," IEEE/ACM Annual SuperComputing Conference (SC12) Companion Volume, Nov. 2012.

Publications

- J. Yi, R. Kettimuthu, V. Vishwanath, "Accelerating Data Movement Leveraging Endsystem and Network Parallelism," IEEE/ACM SC12 Network-Aware Data Management Workshop, Nov. 2012.
- J. Yi, R. Kettimuthu, and V. Vishwanath, "Toward Characterization of Data Movement in Large-Scale Scientific Applications," 8th IEEE eScience, Oct. 2012.
- E. Jung and R. Kettimuthu, "High-Performance Serverless Data Transfer over Wide-Area Networks", submitted to NDM workshop to be held in conjunction with SC'14 (under review).
- E. Jung, R. Kettimuthu, and V. Vishwanath, "Distributed Multipath Routing Algorithms for Data Center Networks", submitted to DISCS workshop to be held in conjunction with SC'14 (under review).
- E. Jung, and R. Kettimuthu, "An overview of Parallelism Exploitation and Cross-layer Optimization for Big Data Transfer", in preparation for submission to journal.
- K. Maheshwari, E. Jung, J. Meng, V. Vishwanath, and R. Kettimuthu, "Improving Multisite Workflow Performance using Model-based Scheduling", in preparation for submission to FUTURE GENERATION COMPUTER SYSTEMS (SCIE).
- R. Kettimuthu, G. Vardoyan, G. Agrawal, P. Sadayappan, and I. Foster, "Adaptive Scheduling of Large-Scale Wide-Area Data Transfers", in preparation to IEEE International Parallel and Distributed Processing Symposium (IPDPS), May 2015.

Serverless Data Transfer

How do we allocate data transfer bandwidth to users?

- User specify requirements for transfers
 - Might always want maximum available resources
- Network backbone may not be the bottleneck
 - End-to-end bandwidth is limited
- What measure do we use?
- How do we allocate?
- How do we enforce?
- Distributed resources network multiple domains, multiple end systems

Questions?