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Exploding data volumes

Astronomy

MACHO etal.: 1 TB
Palomar: 3 TB

2MASS: 10 TB
GALEX: 30 TB

Sloan: 40 TB
Pan-STARRS:
0,00 TB Genomics
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Data movement trends
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Disk-to-Disk Transfers Memory-to-Memory Transfers

Disk-to-Memory Transfers Memory-to-Disk Transfers

Data Movement is being increasingly characterized by
Parallel M-to-N Data Flows



Characteristics of application flows
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A mechanism to characterize and model an application’s data
movement behavior will be critical to better architect future networks



Concerted flows

= Problem: Traditional data transfer mechanisms fail to scale,
fail to satisfy diverse applications needs

= @Goal: Develop new tools that are

— Adaptive: Leverages the characteristics of various components in the
end-to-end path, feedback from network agents etc. to optimize
transfers

— Composable: Captures the diverse flow characteristics and
requirements of applications
= Results: Tools that optimize individual transfers, efficient
scheduling of large number of transfer requests
— Model based approach for component-specific optimization
— Data transfer kernels to capture transfer patterns of applications
— Demonstrated near real-time data movement with 2 applications



Component-specific optimization
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Disk-to-disk data transfer: graph model

= The system is modeled as a directed data flow graph:
— A node indicates a physical system entity or a software entity.
— A edge indicates a connectivity between two entities in terms of data flow.

— Two attributes are assigned on an edge.
e Capacity/Bandwidth: The maximum amount of data flow on the edge
e Cost: CPU cost

Logical Data Data Logical

i i NIC
Disk Channel Computation Channel Destination



Model accuracy with and without perfSONAR data

Node Training Error (%) Validation Error (%)
Gordon 14.4 13.4
Mason 14.1 13.6
NCAR 10.9 14.7
Blacklight 14.2 13.8
Kraken 13.4 14.7
Node Training Error (%) Validation Error (%)
Gordon 11.2 10.6
Mason 10.8 11.6
NCAR 9.7 12.2
Blacklight 11.2 10.8
Kraken 10.4 11.3




Evaluation
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Data transfer skeletons

13.

15.
16.
17.

:InFile = 100 // in MB
::InFileRate = 100 // in MB/s
:OutFile = 10240 // in MB
:N =50

def main()

{

¥

:InFile ::InFileRate infile[N]
:OutFile outfile
call data_gen(infile)
Transfer infile to A
forall g =0:N
{
call reconstruct(infile, outfile)
)
Transfer outfile to B
call analysis(outfile)

Each file is 100MB and it generates 50 files at
100 MB/s rate.

Reconstruction is done with 50x100MB files, and

10GB file is generated.

Analysis is done on the 10GB file.
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Near real-time data movement between
APS and PNNL
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Near real-time data movement between APS

and NIU
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Scheduling transfers

= Maximize resource utilization and reduce slowdown
— Adaptively queue and adjust concurrency
— Use both models and recent observed behavior

" Transfers have different requirements and
constraints

— Time constraints - near real time to highly flexible

— Loss tolerance, rate requirements

= Objective — account requirements to improve overall
user experience

= Consider 2 job types — batch and interactive
— Exploit relaxed deadlines of batch jobs



Results
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Serverless Data Transfer
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How do we allocate data transfer bandwidth to
users?

= User specify requirements for transfers
— Might always want maximum available resources

= Network backbone may not be the bottleneck
— End-to-end bandwidth is limited

= \What measure do we use?
= How do we allocate?
= How do we enforce?

= Distributed resources — network — multiple domains,
multiple end systems



Questions?



