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Thesis 

 Researchers band together into dynamic collaborations 
and employ a number of applications, software tools, 
data sources, and instruments 

 They have access to a growing variety of processing, 
storage and networking resources  

 Goal: “make it easier for scientists to conduct large-scale 
computational tasks that use the power of computing 
resources they do not own to process data they did not 
collect with applications they did not develop” 
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Challenges today 

 Estimate the application resource needs 
 Finding the appropriate computing resources 
 Acquiring those resources 
 Deploying the applications and data on the resources 
 Managing applications and resources during run 
 Make sure the application actually finishes successfully! 

 
 

 Approach: Develop a framework that encompass the five 
phases of collaborative computing—estimate, find, acquire, 
deploy, and use 
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Overview of the Resource Provisioning Loop 
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Workload 
Characterization 

Resource 
Allocation Execution Monitoring 

Workload Archive 

dV/dt Execution Traces Workload 
Estimation 
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Measuring and recording HPC applications 
Argon Leadership Facility 
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 Argonne is working on techniques for gathering job data that work in a 
Blue Gene environment 
 Job run times 

 Use scheduler data for both scheduler and individual task data. 
 Disk I/O 

 Use Darshan (joint development between ALCF and MCS) 
 Users can opt out, but we can assist with user issues if needed 
 Gaining traction at other sites, so could become a more general solution 

 Peak RAM usage 
 Using built in HW performance counters (AutoPerf) 
 Users can take control of performance counters preventing this from working 

 Summer Students prototyped a database for storing / querying this 
data 
 First version was specific to DVDT requested data 

 On-going Work 
 One of the students will be working with ALCF staff part time during the 

school year to generalize the schema. 
 This will also be used internally for troubleshooting / optimization and the 

goal is to make it available to users. 
 Push the results to the archive 
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Darshan overview 

 Runtime library for characterization of application I/O 
 Instrumentation is inserted at build time (for static executables) or at run time 

(for dynamic executables) 
 Captures POSIX I/O, MPI-IO, and limited HDF5 and PNetCDF functions 

 Minimal application impact 
 Bounded memory consumption per process 
 Records strategically chosen counters, timestamps, and histograms 
 Reduces, compresses, and aggregates data at MPI_Finalize() time 

 Compatible with IBM BG, Cray, and Linux environments 
 Deployed system-wide or enabled by individual users 
 Instrumentation is enabled via software modules, environment variables, or 

compiler scripts 
 No source code modifications or changes to build rules 
 No file system dependencies 
 Currently beta testing Cray PE 2.x support for XC30 systems 

 



Darshan analysis tools 
 Each job instrumented with Darshan 

produces a compact characterization log file 
 Darshan command line utilities can be used 

to analyze these log files 
 Example: Darshan-job-summary.pl produces 

a 3-page PDF file summarizing various 
aspects of I/O performance 
 
 

 This figure shows the I/O behavior of a 
786,432 process turbulence simulation 
(production run) on Mira 

 Application is write intensive and benefits 
greatly from collective buffering 

 
 

    Example measurements:  % of runtime in I/O 
 

access size histogram 
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Characterization of a HTC workload: 
The Compact Muon Solenoid (CMS) Experiment 

 
University of Southern California 
University of Wisconsin–Madison  
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Workload Characteristics 
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Characteristic Data 

General Workload 

    Total number of jobs 1,435,280 

    Total number of users 392 

    Total number of execution sites 75 

    Total number of execution nodes 15,484 

Jobs statistics 

    Completed jobs 792,603 

    Preempted jobs 257,230 

    Exit code (!= 0) 385,447 

    Average job runtime (in seconds) 9,444.6 

    Standard deviation of job runtime (in seconds) 14,988.8 

    Average disk usage (in MB) 55.3 

    Standard deviation of disk usage (in MB) 219.1 

    Average memory usage (in MB) 217.1 

    Standard deviation of memory usage (in MB) 659.6 

Characteristics of the CMS workload for a period of a month (Aug 2014) 
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Workload Execution Profiling 

• The workload shows similar behavior to the workload analysis 
conducted in [Sfiligoi 2013] 

• The magnitude of the job runtimes varies among users and 
tasks 
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Job runtimes by user 
sorted by per-user mean job runtime 

Job runtimes by task 
sorted by per-task mean job runtime 
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Workload Execution Profiling (2) 
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Job start time rate 
Colors represent different execution sites – job distribution is relatively balanced among sites 

Job completion time rate 
Colors represent different job status 
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• Correlation Statistics 
• Weak correlations suggest 

that none of the properties 
can be directly used to 
predict future workload 
behaviors 
 

• Two variables are 
correlated if the ellipse is 
too narrow as a line 
 

Workload Characterization 
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Trivial correlations 
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• Correlation measures are 
sensitive to the data distribution 

 

• Probability Density Functions 
• Do not fit any of the most common 

families of density families (e.g. 
Normal or Gamma) 
 

• Our approach 
• Recursive partitioning method to 

combine properties from the workload 
to build Regression Trees 

Workload Characterization (2) 
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• The recursive algorithm looks for 
PDFs that fit a family of density 
• In this work, we consider the Normal 

and Gamma distributions 
 

• Measured with the Kolmogorov-
Smirnov test (K-S test) 

Regression Trees 
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The PDF for the tree node (in blue) 
fits a Gamma distribution (in grey) 
with the following parameters: 
 
Shape parameter = 12 
Rate parameter = 5x10-4 
Mean = 27414.8 
p-value = 0.17 
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Job Estimation: Experimental Results 
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Job Runtime 

Disk Usage Memory Usage 

• Based on the regression trees 
• We built a regression tree per user 
• Estimates are generated according 

to a distribution (Normal or 
Gamma) or a uniform distribution 
 
 
 

Average accuracy of the workload dataset 
The training set is defined as a portion of the entire workload dataset 

The median accuracy 
increases as more data is 
used for the training set  



17 

Resource Allocation 
 

University of Notre Dame 
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Introduction 

• Tasks have different sizes (known at runtime) while 
computation nodes have fixed sizes 

 
 
 

 

• Resource allocation strategies 
• One task per node 

 Resources are underutilized 
 Throughput is reduced 

• Many tasks per node 
 Resources are exhausted 
 Throughput is reduced 

Tasks Computation Nodes 
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General Approach 

• Setting tasks 
• What do we know? 

 Maximum size? 
 Size probability distribution? 
 Empirical distribution? 
 Perfect information? 

 

• Our approach 
• Setting task sizes to reduce resource 

waste 
 Modeling of resource sizes (e.g., memory, 

disk, or network bandwidth) 
 Assumes the task size distribution is known 
 Adapts to empirical distributions 

Success 

Task of unknown size 

Compute some task size 

Run the task in a node 
with the available space. 
Monitor task, and kill it if 

resources exceeded 

Record result Record failure 

Failure 

Already max size 
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Resource Waste Modeling 

Model the task resource 
as a function of time 

Model the task resource usage as  
resource x time (area below the curve) 

Overestimating size 
(waste is the area above the curve) 

Underestimating size 
(waste is resource x time 
until resource exhaustion) 20 

Single Peaks Model 
Simplifying assumption: any resource exhaustion  

only happens at time of maximum peak  
(i.e., resource usage looks like a step function) 
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Finding Task Sizes to Minimize Waste 

• Task sizes (allocations) to be tried are found by solving: 

21 

on which: 

is the sequence of task sizes to be computed (that is, the task sizes to be tried). 

• Random Variables for the Single Peaks Model 
• Maximum peak size 
• Time for successful execution 
• Time at which maximum peak occurs 

Presenter
Presentation Notes
The “single-peaks” assumption allow us to describe resource usage with three random variables (peak, time, time to peak). This is nice, as we do not have to deal with a space of functions, and it provides a conservative approximation to resource usage. The allocations (task sizes to be tried) are found by minimizing the expected value of waste, in which waste is defined as in the previous slide (exhaustion + overallocation).
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Example: Two-step sequence with “Slow Peaks” 

• Worst-case 
• Peak occurs at the end of execution 

 
 
 

 
• Optimality Condition Found 
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am given by max size of computation node, only a1 is unknown. 

can be approximated with 
histograms at runtime 

Adapted to observations  
gathered at runtime 

Applied to the exponential  
distribution 

Presenter
Presentation Notes
In the worst case, resource peak occurs at the end (we call this “slow-peaks”), thus we only need two random variables, peak and time to successful completion. Solving the optimization problem analytically, we find that minimum waste is achieved when p(a_1) = (1/am). Note that with two-step and slow peaks, it turns out the optimal allocation value does not depend on time.  We can readily apply this condition to, for example, an exponential distribution.  Or also, which is very interesting, we can adapt it to empirical distributions, in which we only need the cumulatives of histograms, which makes it very easy to implement for workflows in which we do not have previous knowledge of the task distribution (e.g., first try some tasks allocating the max size, measure utilization, update first allocation, and so forth).
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Synthetic Workflow Experiment 

• Exponential Distribution 
• 5000 Tasks 
• Memory according to an 

exponential distribution 
 Shifted min 10 MB, truncated max 

100 MB, average 20 MB 
• Tasks run anywhere from 10 to 20 

seconds 
• 100 computation nodes available, 

from ND Condor pool 
• Each node with 4 cores and a limit 

of 100 MB of memory 
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Synthetic Workflow Experiment (2) 

• Exponential Distribution 
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from known 
distribution 

from empirical 
distribution 
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Example: Multi-step sequence with “Slow Peaks” 
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percentage of tasks 
 completed by this  

allocation step 
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Example: One,Two and Multi-step sequences with 
“Slow Peaks” 
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normalized resource 
units per task  
(less is better) 

multi-step (as previous slide,  
but in one column) one-step (always max) 

two-step (as optimal in previous table) 
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One, Two, and Multi-step sequence with “Slow 
Peaks” v.s. “Uniform Peaks” 
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slow peaks (resource peaks at end of 
execution, as previous slide) 

uniform peaks (resource peaks occur at any 
time during execution) 
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One, Two, and Multi-step sequence with “Slow 
Peaks” v.s. “Uniform Peaks” 
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• Resource peaks with Gaussian distribution 
• mean=60, sd=10, min=20, max=110 

slow peaks uniform peaks 
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What question does our research motivate us to 
now ask? 
 How to measure, profile and account for the consumption 

of hidden/shared resources?  

 How to minimize the impact of the monitoring process on 
the operational aspects of production systems?  

 How to manage private data collected by the monitoring 
system?  

 How to uniquely identify applications acros sites and 
users? 

 What is the right tradeoff between machine functionality 
and machine performance?  
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dV/dT: Accelerating the Rate of Progress Towards Extreme Scale 
Collaborative Science 

Thank you. 

deelman@isi.edu 
 

http://pegasus.isi.edu 
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