
dV/dt Accelerating the Rate of
Progress towards Extreme

Scale Collaborative Science

Bill Allcock (ANL)
Douglas Thain (ND)

Ewa Deelman (USC)
 Frank Wuerthwein (UCSD)

Miron Livny (UW)

1

2

Thesis

 Researchers band together into dynamic collaborations
and employ a number of applications, software tools,
data sources, and instruments

 They have access to a growing variety of processing,
storage and networking resources

 Goal: “make it easier for scientists to conduct large-scale
computational tasks that use the power of computing
resources they do not own to process data they did not
collect with applications they did not develop”

3

Challenges today

 Estimate the application resource needs
 Finding the appropriate computing resources
 Acquiring those resources
 Deploying the applications and data on the resources
 Managing applications and resources during run
 Make sure the application actually finishes successfully!

 Approach: Develop a framework that encompass the five
phases of collaborative computing—estimate, find, acquire,
deploy, and use

4

Overview of the Resource Provisioning Loop

4

Workload
Characterization

Resource
Allocation Execution Monitoring

Workload Archive

dV/dt Execution Traces Workload
Estimation

5

Measuring and recording HPC applications
Argon Leadership Facility

5

 Argonne is working on techniques for gathering job data that work in a
Blue Gene environment
 Job run times

 Use scheduler data for both scheduler and individual task data.
 Disk I/O

 Use Darshan (joint development between ALCF and MCS)
 Users can opt out, but we can assist with user issues if needed
 Gaining traction at other sites, so could become a more general solution

 Peak RAM usage
 Using built in HW performance counters (AutoPerf)
 Users can take control of performance counters preventing this from working

 Summer Students prototyped a database for storing / querying this
data
 First version was specific to DVDT requested data

 On-going Work
 One of the students will be working with ALCF staff part time during the

school year to generalize the schema.
 This will also be used internally for troubleshooting / optimization and the

goal is to make it available to users.
 Push the results to the archive

6

Darshan overview

 Runtime library for characterization of application I/O
 Instrumentation is inserted at build time (for static executables) or at run time

(for dynamic executables)
 Captures POSIX I/O, MPI-IO, and limited HDF5 and PNetCDF functions

 Minimal application impact
 Bounded memory consumption per process
 Records strategically chosen counters, timestamps, and histograms
 Reduces, compresses, and aggregates data at MPI_Finalize() time

 Compatible with IBM BG, Cray, and Linux environments
 Deployed system-wide or enabled by individual users
 Instrumentation is enabled via software modules, environment variables, or

compiler scripts
 No source code modifications or changes to build rules
 No file system dependencies
 Currently beta testing Cray PE 2.x support for XC30 systems

Darshan analysis tools
 Each job instrumented with Darshan

produces a compact characterization log file
 Darshan command line utilities can be used

to analyze these log files
 Example: Darshan-job-summary.pl produces

a 3-page PDF file summarizing various
aspects of I/O performance

 This figure shows the I/O behavior of a
786,432 process turbulence simulation
(production run) on Mira

 Application is write intensive and benefits
greatly from collective buffering

 Example measurements: % of runtime in I/O

access size histogram

9

Characterization of a HTC workload:
The Compact Muon Solenoid (CMS) Experiment

University of Southern California
University of Wisconsin–Madison

9

10

Workload Characteristics

10

Characteristic Data

General Workload

 Total number of jobs 1,435,280

 Total number of users 392

 Total number of execution sites 75

 Total number of execution nodes 15,484

Jobs statistics

 Completed jobs 792,603

 Preempted jobs 257,230

 Exit code (!= 0) 385,447

 Average job runtime (in seconds) 9,444.6

 Standard deviation of job runtime (in seconds) 14,988.8

 Average disk usage (in MB) 55.3

 Standard deviation of disk usage (in MB) 219.1

 Average memory usage (in MB) 217.1

 Standard deviation of memory usage (in MB) 659.6

Characteristics of the CMS workload for a period of a month (Aug 2014)

11

Workload Execution Profiling

• The workload shows similar behavior to the workload analysis
conducted in [Sfiligoi 2013]

• The magnitude of the job runtimes varies among users and
tasks

11

Job runtimes by user
sorted by per-user mean job runtime

Job runtimes by task
sorted by per-task mean job runtime

12

Workload Execution Profiling (2)

12

Job start time rate
Colors represent different execution sites – job distribution is relatively balanced among sites

Job completion time rate
Colors represent different job status

13

• Correlation Statistics
• Weak correlations suggest

that none of the properties
can be directly used to
predict future workload
behaviors

• Two variables are
correlated if the ellipse is
too narrow as a line

Workload Characterization

13

Trivial correlations

14

• Correlation measures are
sensitive to the data distribution

• Probability Density Functions
• Do not fit any of the most common

families of density families (e.g.
Normal or Gamma)

• Our approach
• Recursive partitioning method to

combine properties from the workload
to build Regression Trees

Workload Characterization (2)

14

15

• The recursive algorithm looks for
PDFs that fit a family of density
• In this work, we consider the Normal

and Gamma distributions

• Measured with the Kolmogorov-
Smirnov test (K-S test)

Regression Trees

15

The PDF for the tree node (in blue)
fits a Gamma distribution (in grey)
with the following parameters:

Shape parameter = 12
Rate parameter = 5x10-4
Mean = 27414.8
p-value = 0.17

16

Job Estimation: Experimental Results

16

Job Runtime

Disk Usage Memory Usage

• Based on the regression trees
• We built a regression tree per user
• Estimates are generated according

to a distribution (Normal or
Gamma) or a uniform distribution

Average accuracy of the workload dataset
The training set is defined as a portion of the entire workload dataset

The median accuracy
increases as more data is
used for the training set

17

Resource Allocation

University of Notre Dame

17

18

Introduction

• Tasks have different sizes (known at runtime) while
computation nodes have fixed sizes

• Resource allocation strategies
• One task per node

 Resources are underutilized
 Throughput is reduced

• Many tasks per node
 Resources are exhausted
 Throughput is reduced

Tasks Computation Nodes

18

19

General Approach

• Setting tasks
• What do we know?

 Maximum size?
 Size probability distribution?
 Empirical distribution?
 Perfect information?

• Our approach
• Setting task sizes to reduce resource

waste
 Modeling of resource sizes (e.g., memory,

disk, or network bandwidth)
 Assumes the task size distribution is known
 Adapts to empirical distributions

Success

Task of unknown size

Compute some task size

Run the task in a node
with the available space.
Monitor task, and kill it if

resources exceeded

Record result Record failure

Failure

Already max size

19

20

Resource Waste Modeling

Model the task resource
as a function of time

Model the task resource usage as
resource x time (area below the curve)

Overestimating size
(waste is the area above the curve)

Underestimating size
(waste is resource x time
until resource exhaustion) 20

Single Peaks Model
Simplifying assumption: any resource exhaustion

only happens at time of maximum peak
(i.e., resource usage looks like a step function)

21

Finding Task Sizes to Minimize Waste

• Task sizes (allocations) to be tried are found by solving:

21

on which:

is the sequence of task sizes to be computed (that is, the task sizes to be tried).

• Random Variables for the Single Peaks Model
• Maximum peak size
• Time for successful execution
• Time at which maximum peak occurs

Presenter
Presentation Notes
The “single-peaks” assumption allow us to describe resource usage with three random variables (peak, time, time to peak). This is nice, as we do not have to deal with a space of functions, and it provides a conservative approximation to resource usage. The allocations (task sizes to be tried) are found by minimizing the expected value of waste, in which waste is defined as in the previous slide (exhaustion + overallocation).

22

Example: Two-step sequence with “Slow Peaks”

• Worst-case
• Peak occurs at the end of execution

• Optimality Condition Found

22

am given by max size of computation node, only a1 is unknown.

can be approximated with
histograms at runtime

Adapted to observations
gathered at runtime

Applied to the exponential
distribution

Presenter
Presentation Notes
In the worst case, resource peak occurs at the end (we call this “slow-peaks”), thus we only need two random variables, peak and time to successful completion. Solving the optimization problem analytically, we find that minimum waste is achieved when p(a_1) = (1/am). Note that with two-step and slow peaks, it turns out the optimal allocation value does not depend on time. We can readily apply this condition to, for example, an exponential distribution. Or also, which is very interesting, we can adapt it to empirical distributions, in which we only need the cumulatives of histograms, which makes it very easy to implement for workflows in which we do not have previous knowledge of the task distribution (e.g., first try some tasks allocating the max size, measure utilization, update first allocation, and so forth).

23

Synthetic Workflow Experiment

• Exponential Distribution
• 5000 Tasks
• Memory according to an

exponential distribution
 Shifted min 10 MB, truncated max

100 MB, average 20 MB
• Tasks run anywhere from 10 to 20

seconds
• 100 computation nodes available,

from ND Condor pool
• Each node with 4 cores and a limit

of 100 MB of memory

23

24

Synthetic Workflow Experiment (2)

• Exponential Distribution

24

from known
distribution

from empirical
distribution

25

Example: Multi-step sequence with “Slow Peaks”

25

percentage of tasks
 completed by this

allocation step

26

Example: One,Two and Multi-step sequences with
“Slow Peaks”

26

normalized resource
units per task
(less is better)

multi-step (as previous slide,
but in one column) one-step (always max)

two-step (as optimal in previous table)

27

One, Two, and Multi-step sequence with “Slow
Peaks” v.s. “Uniform Peaks”

27

slow peaks (resource peaks at end of
execution, as previous slide)

uniform peaks (resource peaks occur at any
time during execution)

28

One, Two, and Multi-step sequence with “Slow
Peaks” v.s. “Uniform Peaks”

28

• Resource peaks with Gaussian distribution
• mean=60, sd=10, min=20, max=110

slow peaks uniform peaks

29

What question does our research motivate us to
now ask?
 How to measure, profile and account for the consumption

of hidden/shared resources?

 How to minimize the impact of the monitoring process on
the operational aspects of production systems?

 How to manage private data collected by the monitoring
system?

 How to uniquely identify applications acros sites and
users?

 What is the right tradeoff between machine functionality
and machine performance?

29

dV/dT: Accelerating the Rate of Progress Towards Extreme Scale
Collaborative Science

Thank you.

deelman@isi.edu

http://pegasus.isi.edu

	dV/dt Accelerating the Rate of Progress towards Extreme Scale Collaborative Science���Bill Allcock (ANL) �Douglas Thain (ND)�Ewa Deelman (USC)� Frank Wuerthwein (UCSD)�Miron Livny (UW)��
	Thesis
	Challenges today
	Overview of the Resource Provisioning Loop
	Measuring and recording HPC applications�Argon Leadership Facility
	Slide Number 6
	Darshan overview
	Darshan analysis tools
	Characterization of a HTC workload:�The Compact Muon Solenoid (CMS) Experiment��University of Southern California�University of Wisconsin–Madison
	Workload Characteristics
	Workload Execution Profiling
	Workload Execution Profiling (2)
	Workload Characterization
	Workload Characterization (2)
	Regression Trees
	Job Estimation: Experimental Results
	Resource Allocation��University of Notre Dame
	Introduction
	General Approach
	Resource Waste Modeling
	Slide Number 21
	Example: Two-step sequence with “Slow Peaks”
	Synthetic Workflow Experiment
	Synthetic Workflow Experiment (2)
	Example: Multi-step sequence with “Slow Peaks”
	Example: One,Two and Multi-step sequences with “Slow Peaks”
	One, Two, and Multi-step sequence with “Slow Peaks” v.s. “Uniform Peaks”
	One, Two, and Multi-step sequence with “Slow Peaks” v.s. “Uniform Peaks”
	What question does our research motivate us to now ask?
	dV/dT: Accelerating the Rate of Progress Towards Extreme Scale Collaborative Science

