
3-Way Software Integrity for HPC

Markus Schordan, Dan Quinlan
Lawrence Livermore National Laboratory

{schordan1,dquinlan}@llnl.gov

May 4, 2015

Trustworthy supercomputing depends on ad-
vanced program optimizations to deliver high
performance and ways to determine how modi-
�cations to a program impact its behavior. The
�rst is important to allow its application on su-
percomputers, the latter important for cyberse-
curity. We must be able to track and identify
any changes to programs and analyze what the
source of the change was. This might be manual
changes, or changes introduced by a compiler (in
an optimization), or a combination of both.

For program optimizations, polyhedral compil-
ers have become increasingly important in the
HPC community as they allow to optimize cache
performance and to introduce parallelism auto-
matically. This systematic approach, using the
polyhedral model [1], has paved the road to suc-
cessfully map a�ne stencil computation to a va-
riety of CPUs, GPUs and FPGAs and also allows
to address scalability of HPC kernels. However,
verifying an entire polyhedral compiler engine
itself, e.g. the Polyhedral Compiler Collection
(PoCC), which is the result of 8 years of multi-
institution development is out of reach: the com-
piler is actually around 0.5 million lines of code,
making the e�ort of producing a certi�cation of
these compiler optimizations in a manner sim-
ilar to Leroy's Compcert work extremely high.
However, restricting the veri�cation to certain
aspects of a program has allowed to verify kernels
of scienti�c codes. For example, recently some
optimization variants have been successfully ver-
i�ed for all benchmarks in the Polybench/C suite
[3].

To ensure scienti�c data integrity, checks on
data must be performed, to ensure that no data

corruption has occurred (e.g. correctness of
repository contents, signatures, etc.).

Thus, to be able to ensure HPC Compiler
Integrity, HPC Optimization Correctness, and
HPC Data Integrity, we face the problem of re-
peatability and reproducibility. This problem
has become an important issue for computer sci-
ence in general [2]. We can target systematically
the above three challenges for HPC integrity by
separating the concerns into

(i) Are we able to repeat the computation at
any point in time?

(ii) Are we able to reproduce the computed re-
sults?

(iii) Are we able to provide proof that the origi-
nal input data has not been tampered since
any point in time?

(iv) Are we able to provide proof that the pro-
gram that computes the data has not been
tampered since any point in time?

If the input data or HPC application was tam-
pered then we cannot reproduce the results. We
may be able to repeat (rerun) the computation,
but the results may be di�erent. If we cannot
repeat the computation (e.g. a simulation that
was running for many weeks on hardware that
is not readily available) we rely on (iii) and (iv).
(i) and (ii) are also required to test the quality
of a model with input data from the past and
how well the present, or an other point in time
for which data has been gathered, would be pre-
dicted.

1



One crucial aspect is to di�erentiate between
code development and the necessary adaptions
of the code and code tampering. We propose a
3-way veri�cation, targeting three di�erent kinds
of application properties:

(a) Quality properties of the code (static analy-
sis)

(b) Data integrity properties (static and dy-
namic analysis)

(c) Platform-speci�c run time behavior proper-
ties (monitoring)

Quality properties of the code are to be never
compromised. No version or variant of the HPC
application is allowed to not properly maintain
the quality properties. For example, we verify
for all array accesses in the code that no past the
array bound access (or exception) can occur. No
change of the source code is allowed that would
change that property.
Data integrity properties can be veri�ed at

compile time as assertions or through run time
veri�cation. Some data integrity can only be per-
formed once the input data is available, therefore
both, compile time and run time veri�cation is
necessary to verify data integrity.
Platform-speci�c run time behavior properties

are monitored through hardware counters and
speci�ed based on previous pro�le runs. This
allows to ensure that an application performs
within de�ned platform-speci�c bounds. For ex-
ample, we can specify that the cache behavior of
a given code can only divert from a given pro-
�le (computed by previous runs) within a spec-
i�ed range. This data is platform speci�c, but
could also be used for an abstract machine that is
speci�cally designed for checking HPC integrity.
If such ranges are speci�ed, changes to the soft-
ware can be identi�ed through a change in behav-
ior that is beyond the capabilities of source-code
and binary analysis.
With (a) we address the detection of modi�-

cations exposing information through unde�ned
behavior of applications. It also ensures that
corner-cases (e.g. past array bound access) that
usually are di�cult for many analysis and veri�-
cation tools to handle, are avoided. With (b) we

address and hope to speci�cally tailor assertion
veri�cation for HPC. With (c) we �learn� about
the expected behavior of an application on a cer-
tain platform.
By establishing and combining the mainte-

nance and monitoring of these three properties in
the development life cycle of HPC applications,
software integrity can be improved dramatically
within the next decades, but can also leverage
much of the excellent work that has already been
done within the past decades. With this 3-way
veri�cation approach we can achieve a 3-way soft-
ware integrity for HPC.
Based on this information we are also able to

assess the impact of changes that have been done
by an individual person. If this information (the
di�erence of the old to the new version) is stored,
we can also create valuable account speci�c (per-
sonalized) information for later analysis, to ana-
lyze what impact a speci�c person had on a code
base.

Acknowledgments. LLNL-CONF-670401. This work was per-

formed under the auspices of the U.S. Department of Energy

by Lawrence Livermore National Laboratory under Contract DE-

AC52-07NA27344. Lawrence Livermore National Security, LLC.

References

[1] Benabderrahmane, M.-W., Pouchet,

L.-N., Cohen, A., and Bastoul, C. The
polyhedral model is more widely applicable
than you think. In Compiler Construction

(2010), Springer, pp. 283�303.

[2] Krishnamurthi, S., and Vitek, J. The
real software crisis: Repeatability as a core
value. Commun. ACM 58, 3 (Feb. 2015), 34�
36.

[3] Schordan, M., Lin, P.-H., Quinlan, D.,
and Pouchet, L.-N. Veri�cation of polyhe-
dral optimizations with constant loop bounds
in �nite state space computations. In Lever-

aging Applications of Formal Methods, Veri�-

cation and Validation. Specialized Techniques

and Applications, T. Margaria and B. Ste�en,
Eds., vol. 8803 of Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2014,
pp. 493�508.

2


