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Introduction. Graphics processing units (GPUs) are powerful for accelerating computation-intensive data-
parallel applications, due to their highly multithreaded architecture and high-bandwidth memory. In order
to achieve better performance and energy efficiency, GPU-accelerated systems have become the new stan-
dard for high performance computing (HPC) and a critical ingredient in the pursuit of exascle computing.
For instance, the U.S. Department of Energy is building two GPU-accelerated supercomputers that will
move the world closer to exascale.

Although GPUs are widely used in HPC clusters, their potential security problems are being largely
ignored. One of the most serious security vulnerabilities is due to the current GPU memory management
schemes. Recent research [3, 4] demonstrates that information leakage may occur from one user to another
because the GPU driver, the operating system (OS), and the GPU card itself do not implement any security-
related memory cleanup measure. For example, widely-used GPUs, including both NVIDIA’s and AMD’s,
do not initialize newly allocated GPU memory which may contain sensitive user data. An attacker can
thus obtain sensitive data kept in GPU memory of a victim program by simply dumping the entire GPU
memory. Specifically, GPUs incur this serious security vulnerability due to the facts that (i) GPUs do not
clear newly allocated memory pages and (ii) GPUs have in-core memory without security mechanisms.

In a typical HPC environment, this uninitialized GPU memory problem may becomes even worse due
to the virtualization technology, which has been widely applied in HPC clusters for various performance
and flexibility purposes. With recent GPU virtualization technologies and the corresponding OS support
(an overview of such technologies can be found in [5]), it is feasible for multiple VMs to share underlying
GPUs in a reliable manner. Unfortunately, current GPU virtualization and memory isolation technologies
cannot prevent information leakage. For example, an attacker can launch a virtual machine (VM) after the
victim’s VM using the same GPU, thus bypassing the GPU memory isolation mechanism. Several recent
studies [3, 4] demonstrate effective attack methods exploiting such GPU vulnerabilities. Unfortunately, no
effective solutions exists in the literature for resolving the security issues. One simple fix would be to force
GPUs to clean any newly allocated GPU memory buffer. However, this solution suffers in practice because
it incurs an unaffordable amount of overheads, which may negate the performance benefits of using GPUs.
According to [3], reinitializing the entire GPU memory space costs approximately three times longer than
the GPU context switching time. The resulting state of affairs is rather unsettling: GPUs are enabling
dramatically better performance and energy efficiency in HPC clusters, but they are causing serious security
vulerabilities that cannot be efficiently protected by current solutions.

Our proposed research. In order to ensure trustworthy supercomputing in GPU-accelerated HPC clus-
ters, we propose to resolve the GPU-incurred security issues by designing and implementing a smart GPU
virtualization and memory isolation ecosystem. We identified a key reason why current GPU virtualization
and memory isolation mechanisms cannot prevent an attacker from launching an VM after the victim’s VM
using the same GPU and thus being able to retrieve the victim’s data. The key reason is because the current
GPU device drivers, including the official drivers or open-sourced drivers that support GPU virtualization
(e.g., Gdev [2]), allocate GPU memory blocks with physically contiguous pages for better memory access la-
tency and cache coherency. However, allocating memory in such a contiguous manner may allow attackers
to easily dump out all the data residing in a contiguous memory space.

Motivated by this observation, we propose to build GM-Guard: a smart GPU virtualization and memory
isolation ecosystem. The key idea behind GM-Guard that enables protection against GPU-incurred infor-
mation leakage is the randomized GPU memory allocation technique, as illustrated in Fig. 1. As seen in
this figure, cuMalloc(), the original function that must be called to allocate physically contiguous memory
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Figure 1: Randomized GPU memory allocation

chunks for GPU computations, is modified to allocate
memory space at the granularity of 4K bytes page, which
is contiguous in virtual memory but physically non-
contiguous. The resulting advantage is obvious. Even if
attackers are able to dump the entire GPU device mem-
ory, they cannot easily interpret the semantics, since all
the contents are segmented and randomized.
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Figure 2: The idea behind implementing the
gpu freelist structure.

A potential shortcoming of this approach is that it
may introduce additional overheads to translate vir-
tual addresses to non-contiguous physical addresses and
fetch/update the corresponding GPU page table. In or-
der to reduce such overheads, we propose to imple-
ment an optimized solution by introducing a gpu freelist
structure to avoid repeatedly allocating and deallocating
randomized memory chunks. The gpu freelist structure
maintains blocks of free pages with sizes of 20, 21, ..., 2k.
An array is maintained for each block size (called the or-
der) that points to a linked list of blocks of free pages, as illustrated in Fig. 2. With the gpu freelist structure,
when a GPU memory allocation request is received, GM-Guard will first check the cached memory blocks
in gpu freelist, and return one block or combinations of blocks that match the requested size. In the memory
deallocation stage, memory blocks are not actually freed, but are instead re-linked in the gpu freelist.

Another interesting idea we will explore is to selectively delete used memory. For many cases, only
part of the GPU memories contains sensitive information that needs to be protected. For example, some
applications use GPUs to increase the performance of encryption algorithms such as AES and RSA. In this
scenario, only the keys are critical for the applications. If we can track these keys in the GPU memory
and only reinitialize the corresponding memory space, we successfully resolve the GPU data leakage issue
while incurring a reasonably low amount of overheads. We plan to implement this idea in GM-Guard by
tracking the sensitive data structure at the compiler level.

We will implement GM-Guard leveraging our recently built GPES [7] and GRU [6], which are efficient
GPU resource management systems that target at non-virtualized and virtualized environments, respec-
tively. GPES and GRU integrate runtime support for GPUs into the OS, allowing the OS and the user space
to use GPUs while protecting GPUs from being excessively occupied by non-privileged or even malicious
user-space programs at the OS level. They also incorporate several techniques that make tasks on GPU
more preemptible and interruptible in a multi-tasking environment. The prototypes of GPES and GRU
were implemented based on the NOUVEAU open-source driver [1], which is the mainstream open-source
GPU driver of Linux, and the open-source GPU driver module Gdev [2].
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