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Focus area: (2) Extreme Scale Data, Knowledge, and Analytics. 
 

Problem Description and Goal: 
Exascale systems, even more than contemporary cluster deployments, will be crucially important for our 
country's infrastructure and security. These systems can be used, for example, to process high-fidelity 
simulation workloads for diverse applications, such as power-grid load-leveling, or simulations of 
uncontrolled nuclear chain reactions. To confidently draw conclusions from such simulations, it is 
mandatory that the computation leading up to the results is not influenced by attacks. 
 Cluster deployments are uniquely positioned to enable attack detection techniques by leveraging 
similarities between cluster nodes and configurations. For example, for a typical high-performance 
computing workload, it is viable that a group of systems running this load show similar behavior over a 
time period. Imagine now that one node is successfully attacked and exploited. The changes on that node 
will result in differences of observable behavior and these differences can be leveraged to detect and 
manage malice. However, any practical exascale deployment will show varying levels of heterogeneity 
that complicate such similarity-based detection attempts. For example, it is unlikely that a supercomputer 
is stocked with exclusively identical hardware. Even now, the NCSA Blue Waters system has 
heterogeneous nodes. It is generally more practical to gradually expand the available computing resources 
within the limits of physical constraints (e.g., space, power, and cooling). Similarly, it is common practice 
to upgrade subsets of nodes over time rather than all nodes simultaneously. Therefore, to apply similarity-
based detection techniques such as the one described above, we need to solve a variety of challenges in 
data acquisition and analysis. The scale and heterogeneity of future exascale deployments call for novel 
data collection and analysis methods that are capable of interpreting and correlating signals 
(measurements) obtained from systems in an efficient and scalable way.  
 The goal of this paper is to discuss possible approaches that can identify and manage divergent and 
potentially malicious behavior in a cluster deployment where individual nodes have largely similar but 
not identical configurations, including hardware, hypervisors, operating systems, and applications. 
 

Possible Approach: 
In many attack scenarios in cluster deployments, the attacker initially compromises only a few nodes, and 
targets other nodes as time progresses. One possible approach is to exploit this observation that initially 
only a few of the nodes exhibit anomalous behavior to detect the infected nodes (systems) and provide 
opportunities for quick response and recovery. This approach features four specific steps: 
 

1) Collect low (performance) overhead sensor data from systems and applications. Sensory data can be derived from a 
variety of sources, such as hardware sensors, system call logs, or application-level data collected from library call 
information. Access times to read sensor data varies greatly between different sources. For example, accessing 
hardware-based performance counters can be achieved at millisecond rate. Collecting library call events that include 
argument values is often a much slower operation. From a security perspective, event monitors are best implemented 
at a higher privilege level than the monitored target. This architecture ensures that a compromised target cannot 
affect sensor readings. For example, if one is only interested in monitoring user-space applications, a kernel-level 
event monitor is sufficient. However, if the threat model includes kernel-level attacks (e.g., rootkits), event 
monitoring should rather be performed in a hypervisor. This higher level of security comes at the cost of the so-
called semantic gap, which is a consequence of the different abstraction layers employed in modern computing 
systems Bridging the semantic gap [1] is frequently a resource-intensive task (e.g., memory and CPU cycles).  
 In this type of work, we expect to encounter two sources of overhead: overhead (1) due to the collection of 
individual signals, and (2) due to the transmission of collected sensor data to decision points. Type-1 overhead 
occurs with each measurement of a signal. Thus, we should target signals that can be collected with small overheads 
already and that allow us to adjust the monitoring frequency as needed. Many processor and server vendors include 



sensors that can be tracked at reasonable overhead. To address type-2 overhead, we should employ sub-sampling 
techniques. Using sub-sampling entails that decisions (i.e., detection of malice) are made based on partial 
information. Thus, sub-sampling inherently opens an avenue for evasion to the attacker. To minimize this window of 
opportunity for the attacker, we need to investigate whether dynamic modification of the sampled signals can be 
leveraged to deliver probabilistic assurances that an attack can be detected. That is, instead of deciding at 
deployment time what signals to sample, we can permute the sampled signals at runtime. 
 

2) Use statistical methods to identify groups of nodes that experience largely consistent behavior. A straight-forward 
approach to assess behavioral similarity of a cluster deployment is to centrally collect information about the 
computing nodes and assess similarity based on this global view [2]. We do not anticipate this to be a feasible 
approach for exascale deployments. Instead, we should exploit locality in terms of (a) the physical proximity of 
similar-type hardware, and (b) the spatial proximity of tasks of an application as a result of the performance-aware 
job allocation algorithms in place. This locality-based approach divides a given deployment into a variety of 
hierarchies based on such proximity measures. Following a divide-and-conquer approach, similarity detection 
mechanisms can be applied at the different layers of the hierarchy. Lower layers provide access to finer-grained 
data, but upper layers have a wider view of the system. The construction of the hierarchy allows the tuning of data-
granularity and communication overheads against detection capabilities and performance. 
 

3) Label potentially malicious or compromised nodes by identifying divergent behavior. The heterogeneity in realistic 
exascale deployments complicates the assessment of behavioral similarity. Naturally, these effects will result in 
differences in measured behavior. However, a practical security solution should not raise alerts because of such 
benign deviations. Thus, to discriminate between benign behavioral variations and variations caused by an attack, 
we can employ supervised machine learning techniques. Based on a labeled training dataset, these techniques allow 
the ranking of individual signals with respect to their predictive ability to detect attacks. The findings from this step 
can be leveraged to refine the sub-sampling presented in step (1). This refinement should further narrow the window 
of opportunity for the attacker to evade detection. This refinement may also allow for the continued operation of 
some resources in step (4). 
 

4) Manage affected and unaffected resources. Finally, there is a need for research into techniques to allow exascale 
system operators and users to effectively manage the tradeoffs between throughput and computing integrity. This 
has been done in related areas [3]. The hierarchies mentioned in step (2) may be one natural way to partition affected 
and unaffected resources. The rankings mentioned in step (3) will be crucial to the efficiency of these techniques. 
These techniques may be related to some of the management ideas mentioned in Focus Area (3), e.g. virtualization, 
containerization, secure tagging. 
 

Impact to DOE: 
The systems to be protected with an approach as described above generate information that is used as the 
basis to make decisions with wide ranging impacts on energy, economy, and national security. A scalable 
and reliable solution to detect and manage malicious activity increases the decision maker’s confidence 
that the data supporting the decision has not been tampered with through malicious interference. 
Confidence in data accuracy is even more crucial in situations where collected information is used for 
autonomous decision making (e.g., load leveling in the power grid). 

We expect that data and implementations resulting from this line of research will be made available to 
interested parties in pursuit of an open science agenda. Dissemination of individual datasets generated 
during this research that are subject to confidentiality restrictions (e.g., the precise configuration of DOE 
clusters) will have to be excluded from such dissemination. Nonetheless, the methods studied and 
developed during this research should be applicable to other similarly structured datasets found in the 
industry and other organizations.  
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