
Services, security, and trust
Ian Foster, foster@anl.gov (with Rachana Ananthakrishnan, Steven Tuecke)

Argonne National Laboratory and the University of Chicago

A white paper on Trust within Open, High-End Networking and Data Centers

The services revolution: Our modern computing environment is evolving rapidly, with profound
implications for the integrity and security of scientific computing. We focus here on one important
aspect of that evolution that is often overlooked, namely the large-scale outsourcing of routine IT
tasks to cloud-hosted software-as-a-service (SaaS) and platform-as-a-service (PaaS).

Commercial IT has largely transitioned to a services approach over the past decade: small
businesses routinely use SaaS to outsource payroll, accounting, travel, HR, document
management, and other tasks. The resulting economies of scale have slashed costs and spurred
innovation. Similarly, PaaS has dramatically increased SaaS speed and quality. Furthermore,
APIs that enable programmatic access to SaaS and PaaS capabilities permit new classes of
applications created by composing logic and data from multiple sources.

There is every reason to expect that many routine functions involved in scientific research—for
example, those concerned with research data management and collaboration—will similarly
migrate to SaaS. Indeed, systems such as Globus, iPlant, and kBase are following that path, and
researchers routinely use systems such as BlueJeans for conferencing, Google Docs for
collaborative editing, Github for software, and Trello for project planning.

Integrity and security challenges: This recasting of science processes in terms of services
means that we must increasingly deal with many users, identity providers, and applications (Web,
mobile, etc.) interacting with many resource services, which themselves will often act as clients of
each other. For example, a Web-based application that supports analysis of data from DOE light
sources may leverage SaaS collaboration, workflow, and data management services, which
themselves interact with storage, computational, and other resources.

Such environments have many interesting implications for the integrity and security of scientific
research. Some are positive: for example, SaaS can be more robust, reliable, and secure than
hand-crafted software running on a workstation. Others are less clear: for example, how do we
determine the provenance of a result generated by an application that invokes multiple remote
services? How do we determine whether a particular remote user of a service is authorized to
access it? How do we support simultaneous use of a service for multiple purposes with different
security requirements? How do we determine the security perimeter of a collaborative application
that uses PaaS capabilities from one provider, SaaS software from several others, and manages
data at multiple laboratories? How do we detect, respond to, and perform post-event diagnosis of
security incidents? As these questions indicate, familiar integrity and security issues may require
different approaches in a services environment.

Potential research directions: We believe that a research program in the integrity and security
of scientific computing needs to address such issues. It could usefully focus, in particular, on:

Methods for defining and validating security requirements. Individuals, projects, and institutions
may have various requirements that they want an application or computation to satisfy: e.g., “all
data modifications are logged” or “no data leaves the US.” How do we express such requirements
and then verify that a particular combination of services satisfies those requirements?

Level-of-assurance negotiation: In today’s environment, different services and resources have
widely varying requirements in terms of the level of assurance of user identity that they require for
different activities. Meanwhile, different users have varying ways of providing such assurances:
e.g., a campus credential, a device that permits two-factor authentication, etc. [3]. Thus we
encounter the need for methods to negotiate between credential providers and credential
consumers. Thus, a service might specify the level of assurance they need for different actions,

e.g: “we will provide anyone with read-only access to data, but write access requires that a user is
subject to an acceptable use policy: e.g., by having a DOE account.” Or: “To change a
configuration element on this service, you need two-factor authentication from an NIST LOA2
authority within the past 15 minutes.” How would we specify such policies, negotiate access to
required credentials, validate that requirements are met?

Multi-tenant single source with variable security: An important feature of SaaS from the
perspective of costs and reliability is the simplicity that results from the provider maintaining and
running a single multi-tenant version of the software. But the security requirements associated
with say an open science and an NNSA deployment of that service are likely to be quite different.
Can we develop methods that would allow for multiple, multi-tenant instantiations of the same
software, each configured to meet a different set of security requirements?

Distributed audit and monitoring: Auditing and monitoring of distributed applications and
computations becomes far more complicated in a distributed environment. For example, consider
a policy that states that no application data leaves the US. Assume that we want to generate an
audit trail that shows this is true—or detect a violation of that policy if it occurs. Different services
may record different information, have different policies governing access to log data, etc.

Achieving least privileges interactions: In an environment in which a user passes requests to
services that then perform actions on the user’s behalf, we inevitably require mechanisms for
(explicitly or implicitly) delegating rights. We would like delegation to adhere to a least privileges
model, meaning that at each step a recipient receives only those privileges required to perform
the requested action, so that damage is limited in the event of a compromise. This least privileges
model is not too hard to achieve in a client server world, but it becomes much harder in
environments that involve the integration of many devices and services. For example: a science
gateway calls a workflow service that calls a SaaS transfer service to move some data, that itself
must interact with storage service providers. We would like the SaaS transfer service to have only
the rights to perform read and writes on the storage services, not the rights to say modify
permissions on those storage services or to launch other workflows on the user’s behalf.

Distributed trust perimeters: While firewalls are often (and appropriately) criticized as an overly
simplistic solution to security, there are benefits to being able to define what is “inside” and what
is “outside” a trust perimeter. Might we be able to use modern encapsulation technologies (e.g.,
virtualization, SDNs) to generalize the notion of perimeter to encompass resources and services
running at different locations?

Some background on Globus SaaS and PaaS: These ideas are informed in part by our work
developing Globus [1], which provides research data management (file transfer, sharing, and
publication) and identity and group management functions via SaaS, hosted on Amazon Web
Services (AWS). Globus also provides API access to those functions, thus enabling its use as a
platform [2]. More than 25,000 registered users have used Globus SaaS functions to transfer
more than 10B files and 85PB over the past four years. Projects such as DOE kBase, DOE
ACME, NSF XSEDE, and NCAR RDA leverage the Globus platform to build collaborative
applications that outsource identity, group, and/or data management to Globus. Our security
mechanisms leverage an identity hub model that allows a user identity to be linked with OpenID,
InCommon, X.509 and other credentials, and that supports a wide range of security protocols.
Globus thus raises many of the issues discussed here and also provides an interesting
framework in which to investigate solutions.

1. Allen, B., Bresnahan, J., Childers, L., Foster, I., Kandaswamy, G., Kettimuthu, R., Kordas, J., Link, M.,
Martin, S., Pickett, K. and Tuecke, S. Software as a Service for Data Scientists. Communications of the
ACM, 55(2):81-88, 2012.

2. Ananthakrishnan, R., Chard, K., Foster, I. and Tuecke, S. Globus Platform-as-a-Service for Collaborative
Science Applications. Concurrency - Practice and Experience, 27(2):290-305, 2014.

3. Peisert, S., Talbot, E. and Bishop, M., Principles of Authentication. New Security Paradigms Workshop,
2013, ACM, 47-56.

