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Once a successful intrusion has happened at a supercomputing center, an insider threat can alter
the integrity of numerical simulations and data analytics executions in at least two ways: (1) by
corrupting the product (data) of the execution (Figure 1) and (2) by affecting the execution in
such a way that the execution does not complete (making it crash or hang), provoking the
equivalent of a denial of service. This paper focuses on attacks producing corruptions that stay
unnoticed by classic security and resilience techniques.! We consider that attacks may lead to
two main classes of corruptions: nonsystematic and systematic. An attack that targets
executions individually may generate nonsystematic corruptions, affecting an execution in a
unique way; that is, the probability of
repetition of the exact same corruption in
another execution is very low. Attacks that
consistently affect executions (same code,
same input parameters) the same way lead
to systematic corruptions. Executions do
not need to be identical to produce the
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same corruptions. Different executions may 03 02 01 0.0 0.1 02
execute the same part of the code or the Figure 1: Propagation at iteration 200 of a corruption in
same instruction that will cause the same density field injected at coordinate [2, 0.0] at iteration 50 in
corruption. an unsteady planar shock simulation.

Limits of Existing Techniques

Nonsystematic corruptions are easily detected by classic techniques such as replication.
Ensemble computations also cover nonsystematic corruptions, since statistical analysis of
ensemble results may detect or absorb the corruptions. However, replication and ensemble
computations both suffer similar limitations: they can be expensive, and thus not all executions
can afford them. Systematic corruptions are even more difficult to detect since comparing
multiple identical executions will not help. Algorithm-based fault tolerance (ABFT) techniques
provide a useful approach to detect both types of corruptions. However, ABFT applies only to a
limited set of numerical kernels, and it covers only data protected by the ABFT scheme. It also
requires code changes and may not detect corruptions affecting the ABFT calculation itself.

N-version programming [1], proposed almost three decades ago, can detect systematic
corruptions. This approach has some similarity with alternates in recovery blocks [2]: results of
the execution of multiple different versions responding to the same specification are compared
in order to detect potential corruptions. The higher the diversity of the versions (from hardware
to application), the higher is the chance of detecting corruptions. This approach does not seem
systematically applicable in our domain, however, because of the cost of developing multiple
versions of all levels of the stacks, from the hardware to the application.

Proposed Solution: External Algorithmic Observer

Since the problem spans all layers of the stack, from the hardware to the application, we believe
that a holistic approach, covering all potential sources of corruptions, has a better chance of
succeeding. We propose an online verification approach using an external algorithmic
observer that will detect nonsystematic as well as systematic corruptions of application data.
During the execution, the transformations applied by the hardware and software stack to the
state data are verified against trusted models run by the observer. This direction is close to n-

1 All corruptions leading to the execution hanging or crashing or to results obviously wrong (easily
detected by the end user) are beyond the scope of this white paper.



version programming but uses verification algorithms much simpler than the execution stack.
The external algorithmic observer approach is similar to the simplex architecture technique for
critical systems [3]. The main idea is that the external algorithmic observer (Figure 2) checks
that the observed execution respects constraints set by the application developer. Specifically,
the external algorithmic observer executes a model of the
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model complexities (compute and memory complexities) 1
that could go up to the complexity of the application and its  Fjgure 2: Principle of the external
software stack. algorithmic observer.

Low-complexity models implement tradeoffs between complexity, accuracy, and other
properties. For example, the model used in [4] relaxes numerical stability. In [5], the model
computes only local predictions for the immediate next simulation step, leveraging the
spatiotemporal continuity present in many applications simulating physics phenomena. This
model does not compute solutions of the equations governing the simulation; rather, it verifies
that the simulation respects a particular physics property between steps. By being much simpler
than the simulation stack, the software implementing the model is also easier to verify and to
protect. While multi-version programming is not applicable to the simulation stack, it is
applicable to the software implementing the model. Several implementations of the same model
or several different models could be executed and compared with the application. Because the
software implementing the model has a low compute complexity, it could be executed on a more
secure environment, such as a protected virtual machine, a secure OS domain, or a secure
processor.

Early Results

The external algorithmic observer approach has been successfully applied to several key DOE
applications for the detection of corruptions [5, 6], where it can detect up to 80%-99% of
harmful corruptions (Figure 3), with only few false alarms (5% of the iterations of a dynamic
simulation involving multiple time steps) and minimal memory overhead (1%<O<20%) and
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feedback control, spatial sampling, and impact-driven Detection Sensitvity (Recall
tolerance setting are needed to improve the detection Figure 3: Detection sensitivity of the
performance and reduce the overheads. external algorithmic observer.

The external algorithmic observer is a promising approach to improve supercomputing
trustworthiness. The community is just at the beginning of its exploration. More research is
needed to improve its performance, to cover a larger diversity of applications, and to integrate
this approach in a secure environment and combine it with other cyber-security techniques.
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