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1. Introduction 
 
The Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) 
will convene a workshop on In Situ Data Management (ISDM) on January 28-29, 2019 at the 
Bethesda North Marriott in Rockville, MD.  This document provides background information on 
ISDM, information about the purpose of workshop and expected outcomes, as well as some 
logistics information for participants.   
 

Purpose of the Workshop  
 
Scientific computing will increasingly incorporate a number of different tasks that need to be 
managed along with the main simulation tasks.  For example, this year’s SC18 agenda featured 
in situ infrastructures, in situ analytics, big data analytics, workflows, data intensive science, 
machine learning, deep learning, and graph analytics—all nontraditional applications unheard of 
in an HPC conference just a few years ago. Perhaps most surprising, more than half of the 2018 
Gordon Bell finalists featured some form of artificial intelligence, deep learning, graph analysis, 
or experimental data analysis in conjunction with or instead of a single computational model that 
solves a system of differential equations. 
 
We define ISDM as the practices, capabilities, and procedures to control the organization 
of data and enable the coordination and communication among heterogeneous tasks, 
executing simultaneously in an HPC system, cooperating toward a common objective.  
This workshop considers In Situ Data Management beyond the traditional roles of accelerating 
simulation I/O and visualizing simulation results, to more broadly support future scientific 
computing needs.  We seek to identify priority research directions for ISDM to support current 
and future HPC scientific workloads, which include, for example, the convergence of simulation, 
data analysis, and artificial intelligence, requiring machine learning, data manipulation, creation 
of data products, assimilation of experimental and observational data, analysis across ensemble 
members, and, eventually the incorporation of tasks on non-von Neumann architecture. 
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The Potential for Greater Scientific Impact from In Situ Data Management 
 
Simulations on HPC systems can generate data up to five orders of magnitude greater than the 
maximum data volume that can be exported to the storage system.  Current approaches to 
managing this bottleneck focus on executing data analysis and visualization tasks in situ—within 
the HPC system itself—to produce data products that can be orders of magnitude smaller than 
the full state data.  The visualization and I/O communities have developed a range of in situ 
data processing and analysis technologies as a way of achieving data analysis capabilities 
despite I/O bottlenecks on HPC systems.   
 
Managing data in situ, that is, processing data while they are being generated, can lead to 
better use of storage resources and better science: it eliminates some of the negative impacts of 
the I/O bottleneck; saves storage space; allows the data analysis and processing tasks to 
access the full data from the simulation as opposed to just the output data; reduces data 
movement; and reduces time to solution, to name a few.  In fact, in a growing number of cases, 
in situ data techniques are the only way to process and analyze data.  The in situ paradigm, 
however, also complicates some operations. For example, human interaction, exploratory 
investigation, and temporal analysis may be easier to conduct post hoc. Hence, there is a rich 
design space for carrying out computation in situ: determining which data products are needed 
for post hoc analysis and the graph of in situ tasks needed to create these; scheduling and 
executing in situ tasks; and managing the data and communication flow among these tasks. 
 
A motivation for this workshop is that ISDM capabilities could be expanded and leveraged for a 
broader range of current and future HPC applications.  In addition to helping meet the 
challenges of extreme-scale simulation data, ISDM technologies can facilitate applications that 
merge simulation and data analysis, simulation and machine learning, or the processing and 
analysis of experimental data.   

Workshop Deliverables 
 
The primary outcome of the workshop is a short list of (typically 3-5) high-level priority research 
directions (PRDs). A PRD is an articulation of community-level research goals synthesized from 
the ideas generated during the workshop. The workshop agenda1 is divided into several 
breakout sessions, the topics for which were chosen to cover the relevant technical areas and 
elicit productive suggestions from the participants.  However, ideas and suggestions should not 
be limited by the breakout session topics of focus.  PRDs often transcend and cross-cut multiple 
topics; and ideas generated by different breakout sessions may point to the same PRD. 
 
Each breakout session will be required to develop a number of candidate PRDs, to be 
presented in the read-out sessions on the second day (Figure 1 and Figure 2). The organizing 
committee will produce draft PRDs for the workshop based on the breakout sessions’ candidate 
PRDs.  These will be presented to and discussed by all workshop participants during the final 
plenary session on the second day, during which changes can be proposed and considered.  A 
                                                
1 See Appendix for the workshop agenda. 
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detailed description of the final PRDs, along with summaries of the individual topic discussions, 
will appear in a written report to follow after the workshop. 
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Figure 1:  Candidate PRDs identified during the breakout sessions will be read back to the entire workshop during 
the second day and prioritized. 
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2. Summary of Present State 
 

In Situ Technology Past and Present 
 
A survey of past and present in situ methods and tools2  demonstrates how reusable in situ 
software evolved separately from the storage and visualization communities. Storage solutions 
originally were used for staging a simulation’s state for checkpointing, restarting, or saving 
outputs for later post hoc analysis. Even though such tools have expanded their applications 
beyond I/O staging, their I/O style of interface and data model remain. Meanwhile, the scientific 
visualization community developed in situ equivalents of their post hoc tools. Coming at the in 
situ problem from a visualization direction, these tools feature the VTK data model and scripts 
for connecting and executing pipelines of VTK filters. 
 
Today, new tools are being developed for more generic data producer / consumer tasks with the 
potential to manage a general graph of tasks communicating custom data types. There lacks, 
however, a common vision for core capabilities to be delivered to users; as well as sufficient 
attention to making these tools interoperable. To more broadly support scientific computing 
needs, this workshop will provide a forum to address generic in situ data management 
capabilities, for example for machine learning, automated spawning of ensemble runs, 
automated triggering and production of data products, and tasks run on non-von Neumann 
architectures.  There are also opportunities to discuss provenance and uncertainty as data are 
managed across tasks, as well as facilitating workflows across multiple data and computing 
resources through interfaces between distributed and in situ workflows systems. 
 

Science Drivers 
 
This workshop anticipates a future of diverse HPC workloads that will increasingly include the 
application types listed below for which in situ data management provides enabling capabilities. 
The following are illustrative examples, not intended to be all-inclusive, of current or future uses 
of ISDM. 

● Smart simulations featuring online feedback and potential computational steering 
● Ensemble analysis of stochastic or rare events, uncertainty studies, or model calibration 
● High-fidelity, highly scalable data analysis and visualization 
● Workflows featuring the convergence of “Big Data” and HPC software and tools 
● Use of machine learning and deep learning alongside simulations or experiments 
● Real-time experimental and observational data analysis and assimilation 

                                                
2 Bauer et al. In Situ Methods, Infrastructures, and Applications on High Performance Computing 
Platforms. Proceedings of EuroVis 2016 Conference, 2016. 
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Two examples of applications embodying some of the above elements are illustrated in Figure 3 
and Figure 4. Figure 3 is a future vision of smart simulations in an HEP-ASCR partnership.3 The 
goal of this activity is to automatically simulate millions of concurrent Monte Carlo proton-proton 
collisions, search the response surface for minimum statistical difference with experimentally 
observed collisions, and advance toward new regions of the parameter space to investigate. 
Figure 4 is an example of ensemble analysis. It shows a BES-ASCR collaboration to simulate 
nucleation as a material cools and crystallizes.4 I/O bottlenecks are avoided by detecting crystal 
structures in situ and only storing features of interest. Instead of one large simulation, many 
smaller instances are launched dynamically until a rare event is detected; a pattern that has 
widespread applicability to other domains such as protein folding, self-assembled structures, 
and genetic algorithms. 
 

                                                
3 Norman et al. Implementation of Feldman-Cousins Correction and Oscillation Calculations in the HPC 
Environment for the NOvA and DUNE Experiments. Proceedings of CHEP 2018 Conference, 2018. 
4 Yildiz et al. Heterogeneous Hierarchical Workflow Composition. Submitted to Computers in Science and 
Engineering (CiSE) Journal Special Issue on Scientific Workflows, 2019. 
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Figure 3:  HEP workflow of in situ neutrino event generation and parameter optimization. 
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Computing Ecosystem 
 
The end of Moore’s law and Dennard scaling has led to increased concurrency and 
heterogeneity in computing units and reliance on both general and dedicated-purpose 
accelerators. Disparity in data movement latency, bandwidth, and energy consumption 
compared with the rate of floating point operations has led to deeper memory and storage 
hierarchies. To put the imbalance between computing and data management in perspective, the 
rate of data that can be computed on the Summit supercomputer (assuming 1 byte generated 
per clock cycle) is five orders of magnitude greater than the bandwidth of its parallel file system.  
The I/O bottleneck is one driver of the need for in situ analysis. 
 
Current approaches to manage this bottleneck focus on executing data analysis, visualization, 
and the production of data products in situ. The resulting data products are often orders of 
magnitude smaller than the full state data, thereby eliminating some of the negative impacts of 
the I/O bottleneck and saving storage space. In situ analyses can also lead to better science.  
While the infrequency of data outputs limits the fidelity of post hoc analysis, in situ analysis can 
have much higher fidelity because analysis tasks have access to simulation data directly, and 
are not throttled by the I/O. The in situ paradigm, however, also complicates some operations. 
For example, human interaction, exploratory investigation, and temporal analysis are easier to 
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Figure 4:  BES workflow of dynamic ensemble of simulations and in situ detection of stochastic events. 
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conduct post hoc. In situ methods also add complexity to the workflow because of the larger 
number of interconnected, concurrent tasks that need to be managed. 
 

3. Outline of the Workshop 
 
The workshop agenda appears in the appendix. Day 1 of the workshop begins with a plenary 
session and proceeds to breakout sessions on the following ISDM topics: 

• science applications,  
• computational platforms,  
• data and communication models,  
• programming and execution models,  
• provenance and reproducibility,  
• analysis algorithms, and  
• software architecture. 

Each of these topics is explained below. 
 
The plenary session begins with talks from application domain scientists and is intended to help 
workshop participants think about ISDM in new ways. Following are 6 breakout groups 
organized into 3 sessions of 2 parallel breakouts each. Each breakout group features a topic 
area described below, with the goal of each breakout being to submit several candidate PRDs 
for consideration on the second day of the workshop. 
 
Day 2 begins with short informative talks about other related workshops, with the remainder of 
the day being dedicated to distilling ideas from day 1 into draft PRDs for the workshop report. 
We envision that each breakout will report several equally-viable candidate PRDs. The final 
session of the workshop is an all-group discussion where we will prioritize, synthesize, and cull 
the candidate PRDs down to a final set of 3 to 5 draft PRDs to be included in the workshop 
report. 
 
The following one-page descriptions of each of the breakout sessions are intended to provide 
some context for each topic and to start the conversation with some leading questions, but they 
are not intended to limit discussion to the points listed. We have also identified some questions 
that are common to all topics, and we would like participants to consider and address the 
following in each session: 

● What assumptions and dependencies does this topic have on other topics in the ISDM 
workshop? 

● What interactions and linkages does this topic have with research in other ASCR 
workshops and programs? 
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Science Applications 
 
Goals of ISDM include enabling useful and insightful in situ analysis at the desired level of 
fidelity in order to provide feedback to the user, or to automatically steer the simulation or 
analysis. “Users” here are broadly defined as simulation scientists, experimentalists, computer 
scientists, and application developers. Users often want ISDM to provide efficient utilization of in 
situ data for analysis with little impact on running simulations or disruption of streaming input 
data.  ISDM can decrease the copying and conversion of in situ algorithm input and output data, 
provide appropriate data structures that capture necessary information, improve computational 
performance of in situ algorithms within the application, and potentially provide provenance and 
resilience.  The scientific applications topic area explores commonalities among applications 
and examines categories of use cases that drive many of the other topic areas of the workshop, 
including the state of the practice that will identify gaps in ISDM. 
  
Overall driving question: What ISDM capabilities are needed to best meet science application 
requirements?  Such requirements can be found in the Exascale Requirements Review.5 
  
Subtopic: Commonalities of current and future applications using in situ analysis in similar ways 

● Can we find a useful categorization of scientific applications using in situ analysis?   
● Are there common data models and/or programming models? 
● What are the typical in situ analysis algorithms and in situ frameworks used for each 

application category? 
  
Subtopic: In situ frameworks and usability 

● What are the missing elements in existing frameworks that prevent wider adoption? How 
will frameworks need to evolve to meet the needs of science applications in the future? 
New architectures? 

● What skills are needed by science teams to develop frameworks/technology? What is 
needed in workforce development to address the needs of future applications? Where is 
the education gap? 

● What is required of an application to use in situ analysis algorithms? 
● What are the tradeoffs between domain-specific and generic in situ frameworks? 
● Do performance and scalability of in situ frameworks affect adoption? If so, in what way? 

  
Subtopic: ISDM for the science application workflow 

● How can ISDM support a science application workflow that includes both in situ and 
distributed-area or inter-facility components? 

● How can workflow management systems (WMSs) couple to ISDM tools for in situ 
analysis? 

  

                                                
5 http://exascaleage.org/ 
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 Data Models: Connection and Communication 
 
This workshop views data models as abstractions and implementations describing how a set of 
values in memory should be interpreted as a relevant scientific object, as well as the 
middleware and/or communication tools needed to access data in situ.  As such, tools to 
register, manipulate, communicate, publish, and query data models at multiple levels are key to 
moving beyond having each in situ component being a bespoke, one-off implementation.  Some 
communities have adopted a single unified data standard that allows them to implicitly address 
data model matching issues.  Similarly, some programming models (see Programming and 
Execution Models section) enforce particular data approaches like zero-copy pointer access that 
enable simpler runtime assumptions but may sacrifice usage flexibility.   
 
Both of these approaches can limit programmer productivity and software reusability, however.  
More explicit and robust tools, methods, and frameworks are required to improve ISDM data 
descriptions and communications without providing undue burden on the programmer or end 
user.  Hence, data models for ISDM cover several overlapping issues:  structural definition (Is it 
an integer?  A 64-bit floating point?), semantic definition (Does this linked list represent a 
graph?), and access definition (Is this serialized as a message or do pointers access scattered 
memory locations?).   
 
Overall driving question:  Are there data model commonalities or motifs for description and 
access that we can identify that will promote programmer productivity and software reusability?   
 
Subtopic: Data interchange 

● What framework or tools services could automate the conversion between differing 
producer and consumer data models? 

● How should we best address the mismatch between producer and consumer data model 
definitions? 

 
Subtopic: Performance and usability of data models 

● What is the interplay between data model and data communication in light of evolving 
heterogeneity in systems and performance portability? 

● What developments are needed to make data format management, zero-copy data 
layout descriptions, and/or automated structure definition more universally available? 

● How do data model access and descriptor models change for accelerators? 
 
Subtopic: Metadata 

● What is the interplay between computational, provenance, performance portability, and 
archival data models?  Are there differences in time scale where they are relevant? 

● Do we need metadata schema for analysis, visualization, deep learning, and other in situ 
components, or are there schema-less approaches that offer advantages? 

  



10 
 

Computational Platforms and Environments 
 
While previous in situ efforts reacted, in a defensive manner, to changes in computational 
platforms and environments (the I/O bottleneck, for example), a more strategic approach is 
needed to ensure that platforms and environments meet the analysis and visualization needs of 
computational scientists, and that in situ software is flexible enough to exploit emerging 
technologies.  In this workshop, we elicit ideas that exploit recent and anticipated changes to 
high-performance computational platforms and environments as opportunities for the in situ 
analysis research community. For example, nonvolatile memory is expanding per-node storage 
capacity, affording potential opportunities for creative data management and new analysis 
techniques; and new computational platforms are designed to support machine learning. In 
addition, we expect somewhat pervasive processing capabilities through complex 
heterogeneous node architectures, such as systems with GPUs, FPGAs, processing-in-
memory, processing-in-network, and neuromorphic hardware. Such advances create exciting 
opportunities for in situ analysis research.  
 
Overall driving question: How do we develop ISDM technologies to adequately exploit emerging 
computational platform and environment capabilities?  
 
Subtopic: Memory and storage architectures 

● How should ISDM technologies exploit/influence SSIO innovations in storage and data 
management, for example multi-level memory, NVRAM, and in-system data services?  
What interfaces with storage system software are advantageous? 

 
Subtopic: Heterogeneous node architectures and pervasive computing 

• What opportunities for ISDM arise from the computing characteristics of GPUs, FPGAs, 
neuromorphic hardware, and processing-in-memory?  What level of portability can be 
ensured for ISDM capabilities?  How? 

 
Subtopic: Operating system and runtime requirements 

● What are the operating system and runtime (OS/R) requirements for in situ analysis? 
● How should ISDM technologies share resources (e.g., memory, storage, and 

accelerators) among tasks and with other parts of the software stack (e.g., application, 
file system, runtime system)? 

● What advances in OS/R technology will be needed to fully realize a convergence of HPC 
and “Big Data” analysis, such as machine learning, experimental data streaming, and 
others?  How should ISDM capabilities interface with or influence these new 
technologies?   

 
Subtopic: Role of ISDM in co-design 

● Does ISDM put unique stresses on hardware or contribute unique needs not already 
represented by other use cases?  If yes, how should ISDM be considered by HPC 
system designers?   
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Analysis Algorithms 
 
Data analysis algorithms that operate in situ may have unique characteristics and requirements 
compared with those designed for post hoc execution. Algorithms designed for in situ execution 
can potentially be scaled to the full spatiotemporal resolution of data being produced by the 
application, at the rate being produced, and on platforms of extreme concurrency and significant 
heterogeneity. To be effective in this regard, advances in scalable and platform-portable 
methods is a high priority.  
  
Overall driving question: How do we architect analysis algorithms, including ML, to be scalable, 
platform-portable, and to support the increased diversity and complexity of in situ science use 
cases on future generations of computational platforms? 
 
Subtopic: Performance portability 

• How can performance and scalability across applications (computational and 
experimental), workflows (in situ and distributed), and heterogeneous architectures 
(current and future) be achieved? 

 
Subtopic: Data-driven algorithms and emerging in situ use cases 

• How can existing algorithms in “Big Data” tools and frameworks be used, and which 
algorithms must be redesigned? How should scalable, parallel, “explainable” machine 
learning algorithms that obey physical models and/or constraints be developed? 

• In the absence of human interactivity, how can parameters “intelligently” be set in 
computationally-steered workflows? 

• What algorithmic challenges arise in complex in situ workflows (e.g., real-time model 
calibration, integration of experimental, observational, and simulation data, and high-
fidelity uncertainty quantification)? 

• What new opportunities exist for analysis methods when working with full spatiotemporal 
resolution data? What new science is possible? 

 
Subtopic: Resource-constrained and approximate methods  

• How can low-complexity approximate solution techniques, including sampling 
approaches, surrogates, and/or reduced-order models be used? 

• Can analysis algorithms be redesigned to minimize data movement, energy, or conserve 
other resources (e.g., communication-avoiding algorithms or stochastic communication)? 

 
Subtopic: Relationship between ISDM framework and algorithmic design 

• What algorithmic primitives should an ISDM framework provide? What can/should be 
borrowed from “Big Data” frameworks (e.g., Spark’s reduce by key)? 

• What is the interplay between ISDM frameworks, algorithms, and data models? What 
co-design challenges exist? 

• How can ISDM be an enabler and not a barrier to developing performance-portable, 
sustainable, and interoperable algorithms? How can ISDM enable sharing and simplify 
development of new methods? 
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Provenance and Reproducibility 
 
ISDM creates a degree of separation between scientists and data, making provenance essential 
in order to trust the results of in situ workflows. For example, with the increasing adoption of 
machine learning in ISDM, capturing hyperparameters, noise levels, decision points, and 
training data can facilitate replicating results and increase confidence in predictions.  
Provenance—a record of data products and their transformations—serves multiple purposes: 
trust, code debugging and optimization, data quality and audit, and scientific reproducibility. The 
potential volume and verbosity of provenance information, the cost of capture, and the 
complexity of supporting metadata make a principled, targeted, and systematic approach to in 
situ provenance collection essential. 
 
Overall driving question: For in situ applications, what is the minimum set of provenance 
information that needs to be extracted so that captured information will be useful for various 
purposes later? 
 
Subtopic: Uses of in situ provenance information 

● How will provenance information collected in situ be used post hoc? 
● How can provenance enable or improve search, trust or quality assurance, performance 

analysis, and/or reproducibility? 
 
Subtopic: Targeted in situ collection of provenance 

● What are the application- and architecture-dependent goals for which in situ provenance 
needs to be collected? 

● To what extent should ISDM software and frameworks support the selection, capture, 
interpretation, and usage of provenance information and metadata? 

● To what extent should they support data reduction of provenance information?  
 
Subtopic:  Provenance for performance analysis 

● What impact will provenance collection have on in situ execution, given that resources 
are already shared between various tasks? 

● What are design criteria for minimally invasive provenance extraction and maximum 
usability in ISDM? 

● What are the tradeoffs between enabling reproducibility and potent impact on application 
performance and resource usage? 

 
Subtopic: Provenance for result validation, replication, and reproducibility 

● What does reproducibility mean for in situ workflows where data are transformed for 
analysis and only derived data products are available post hoc? 

● What is the minimal provenance required for a data product created in situ to be 
reproducible and reusable? How does that differ from products created post hoc? 

● If machine learning is used for in situ analysis, what provenance should be extracted to 
ensure trust and reproducibility of results?  How will it differ from provenance information 
for machine learning applications post hoc?  
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Programming and Execution Models 
 
Programming and execution models (PEMs) are critical to the discussion of ISDM, because the 
manner in which in situ data are accessed and managed across HPC resources largely 
depends on the programming model used.  The PEM also controls how in situ computations are 
run (parallelism and ordering of computations) and where they are run (what node and what 
processing unit).  Often PEMs include data models or have constraints on how data are 
managed (see the Data Models: Connections and Communication section). 

  
Examples of PEMs that could be included in this topic area include but are not limited to 1) Bulk 
synchronous and asynchronous models, 2) Task-based models, 3) “Big Data” (databases, 
message queueing systems, map-reduce, etc.) 4) Mixed models (eg. MPI + X) or converged 
models (“Big Data” + HPC) 

  
Overall driving question: How can PEMs support ISDM for effective and efficient in situ data 
analysis? 

  
Subtopic: Suitability of PEMs for in situ data management 

● Are there aspects of PEMs that best support certain types of in situ data analysis or in 
situ data types? 

● How can in situ data analysis be supported within systems for ISDM workflows that may 
use multiple PEMs and/or converged “Big Data” + HPC PEMs?  Are there any special 
considerations for ISDM in this case? 

● Is there a long-term, performance-portable PEM solution that does not require a code 
rewrite every 5 years? 

  
Subtopic: Support for dynamic computations or data generation that produce data at different 
rates and on different resources  

● How can PEMs support dynamic in situ data analysis for irregular or unpredictable input 
data generation? 

● How can PEMs support performance-portable in situ data analysis? How can they 
support visibility into the performance tradeoffs of in situ data analysis? 

● How can PEMs keep up with input data generation, especially for applications that need 
to be real-time or pseudo real-time? 

  
Subtopic: Usability of PEMs for in situ analysis   

● Are there any domain-specific high-level PEM interfaces that might better enable in situ 
analysis frameworks or in situ analysis, or be more usable for varying types of users and 
levels of user expertise? 

● How can PEMs support provenance capture during in situ analysis with the goal of 
understanding the lineage of the results? 

● How can PEMs support resilience when in situ computations may fail? 
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Software Architecture for Usability and Sustainability 
 
The ISDM “software environment” is diverse and multi-faceted; this topic area examines the 
design of high-level software architecture that promotes the usability, utility, and longevity of 
ISDM methods and infrastructure. In the ISDM context, the software environment may be 
thought of enabling the execution of a dynamic graph of multiple producers and consumers. 
Producers are sources of data, and may be simulations, experiments, or combinations of both. 
Consumers ingest and process data, and may in turn become data producers for other 
downstream consumers. The graph, which defines processing order, may be dynamic and 
change in response to data- or processing-dependent factors.  The set of nodes in the graph, 
the tasks (see the Analysis Algorithms section), may be diverse, and may be scheduled for 
execution on different types of hardware (see the Computational Platforms and Environments 
section).  
 
Overall driving question: What design issues will promote longevity of ISDM software as well as 
promote adoption and use by the science community? 
 
Subtopic: ISDM software and ecosystem architecture 

● What would an “ideal” ISDM ecosystem look like? From a researcher/developer point of 
view, from a user’s point of view, and from an ASCR research portfolio view? 

● What design and architecture choices promote reuse and inclusion of software tools 
from many sources, both ASCR-funded research efforts as well as 3rd party tools, in a 
composable fashion, such that an ISDM software stack/ecosystem maximizes use of 
technology from diverse sources? 
 

Subtopic: Usability and adoption 
● What are the pros and cons of using ISDM software infrastructure/tools as opposed to 

deploying bespoke technologies and methods directly into an application?  
● What types of software users/developers will interact with, extend, develop, and deploy 

ISDM technologies? 
● From the user’s point of view, what are impediments to using and usability of ISDM 

software, and how should these issues be addressed? (Users may be application, 
library, or analysis developers.) 

● What does reusability mean in this context, and what are the barriers to reusability? 
 

Subtopic: Sustainability and growth 
● What are impediments to the sustainability of ISDM software methods and tools, and 

what research is needed to address these issues? 
● What are advantages of using 3rd party, emerging capabilities, such as machine 

learning tools, and alternate design/execution patterns, as part of the ISDM approach? 
● What does ISDM software research, development, and deployment (R&D&D) need from 

other areas, like programming models, OS/R, operational policy at HPC centers, 
distributed workflows, data streaming, etc.? 
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4. Appendix 

Agenda 
Monday, January 28, 2019 

Time Activity Activity 

7:30 AM – 8:30 AM Registration and breakfast available 

8:30 AM - 9:15 AM Opening remarks  

9:15 AM - 10:45 AM Plenary session: 
Science applications 

 

10:45 AM - 11:00 AM Break  

11:00 AM - 12:30 PM Breakout session 1A: 
Data models: connection and 
communication 

Breakout session 1B: 
Computational platforms and 
environments 

12:30 PM - 1:30 PM Lunch  

1:30 PM -  3:00 PM Breakout session 2A: 
Analysis algorithms 

Breakout session 2B: 
Provenance & reproducibility 

3:00 PM - 3:30 PM Break  

3:30 PM - 5:00 PM Breakout session 3A: 
Programming & execution models 

Breakout session 3B: 
Software architecture for 
usability and sustainability 

 
Tuesday, January 29, 2019 

Time Activity 

7:30 AM – 8:30 AM Registration and breakfast available 

8:30 AM - 9:15 AM Summaries of related workshop activities 

9:15 AM - 10:00 AM Report back from breakout sessions 1A and 1B 

10:00 AM - 10:45 AM Report back from breakout sessions 2A and 2B 

10:45 AM - 11:15 AM Break 

11:15 AM - 12:00 PM Report back from breakout sessions 3A and 3B 

12:00 PM - 1:00 PM Lunch 

1:00 PM - 2:30 PM Prioritizing research directions 

2:30 PM Workshop adjourns 

 
Table 1: Workshop agenda  
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Organizing Committee 
 

Name Affiliation Role Email 

Tom Peterka Argonne National 
Laboratory (ANL) 

Chair tpeterka@mcs.anl.gov 

Debbie Bard National Energy 
Research Scientific 
Computing Center 
(NERSC) 

Organizer djbard@lbl.gov 

Janine Bennett Sandia National 
Laboratories (SNL) 

Organizer jcbenne@sandia.gov 

Wes Bethel Lawrence Berkeley 
National Laboratory 
(LBNL) 

Organizer ewbethel@lbl.gov 

Ron Oldfield Sandia National 
Laboratories (SNL) 

Organizer raoldfi@sandia.gov 

Line Pouchard Brookhaven National 
Laboratory (BNL) 

Organizer pouchard@bnl.gov 

Christine Sweeney Los Alamos National 
Laboratory (LANL) 

Organizer cahrens@lanl.gov 

Matthew Wolf Oak Ridge National 
Laboratory (ORNL) 

Organizer wolfmd@ornl.gov 

Laura Biven U.S. Department of 
Energy Advanced 
Scientific Computing 
Research (DOE-ASCR) 

Program 
Manager 

laura.biven@science.doe.gov 

 
Table 2: Workshop organizing committee 
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Related Workshops and Activities 
 

● Findings of the ASCR Basic Research Needs Workshop on Scientific Machine Learning 
(January 2018) 

○ DOI:10.2172/1484362 
● Findings of the ASCR Basic Research Needs Workshop on Extreme Heterogeneity 

(January 2018) 
○ DOI: 10.2172/1473756  

● Dagstuhl In Situ Visualization for Computational Science Workshop (July 2018) 
○ https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18271 

● ASCR Storage Systems and Input/Output Workshop (September 2018) 
○ https://www.orau.gov/ssioworkshop2018/default.htm 

● Gap Analysis: Materials Discovery through Data Science at Advanced User Light 
Sources Workshop (October 2018) 

○ http://www.cvent.com/events/gap-analysis/event-summary-
3ad86ec662904f829af44a6f24f14dc7.aspx 

● NITRD Convergence of High Performance Computing, Big Data, and Machine Learning 
Workshop (October 2018) 

○ https://www.nitrd.gov/nitrdgroups/index.php?title=HPC-BD-Convergence 
● ASCR Exascale Requirements Review workshop reports 

○ http://exascaleage.org/  


