
XGC1: A Global, 5D gyrokinetic, multiscale particle-in-cell code for the
study of edge physics in toroidal fusion devices

A. The XGC1 code is the main application of the SciDAC-3 Center for Edge Physics

Simulation project. It comprises of about 9 full time and occasional developers
distributed across the US. A little more than half of them are co-located at the institution
of the Principal Investigator (PPPL).

B. XGC1 is written primarily in FORTRAN but also includes some C routines for a total of

about 63,000 lines of source code. The method used in XGC1 is particle-in-cell (PIC)
where particles are being advanced in time combining a 4th order Runge Kutta and a
2nd order predictor-corrector algorithm and the fields, which are represented by PDEs,
are evaluated using a multigrid solver. The solver is implemented with the PETSc library.
Collisions between the particles are also taken into account and handled through a fully
nonlinear operator. The nonlinear collision operation could be almost as computationally
expensive as advancing the simulation particles (ions and electrons). Parallelism is
implemented with a hybrid MPI+OpenMP model of different levels (domain
decomposition and particle distribution with MPI, loop-level parallelism with OpenMP).
XGC1 treats all the plasma regions in the tokamak fusion device including the separatrix
region, scrape-off layer, and wall interaction. Most of the research carried out with XGC1
focuses on the complex plasma edge region across the magnetic separatrix surface,
including the interaction with the wall of the device. Understanding the edge physics in
tokamaks is critically important for fusion. Depending on the size of tokamak being
simulated, XGC1 runs typically use from 1/3 to the full size of the leadership class
computers Titan and Mira, where the code routinely runs. Edison at NERSC is also an
important platform for smaller simulations. In addition to PETSc for the solver, the high
performance I/O library ADIOS is being used for writing out the data and restart files.

C. XGC1 has always been a highly portable code. The combination of MPI at the top level

and OpenMP at the loop-level (with no MPI calls within parallel regions) has allowed the
code to be ported with little effort on all the high-end systems of the past approximately 8
years. Within this context, performance portability is enabled by many compile-time and
runtime algorithm and implementation options, and benchmarking is used to establish
effective settings. Note that performance portability is an issue for change of process
and thread count, and for a change of science problem even on the same system.
Another aspect is that performance is tracked for all development and production runs,
enabling performance issues to be identified and diagnosed quickly. The only difficulties
came from changes to the PETSc library, which would often require adjustments to the
source code. The arrival of GPU compute hardware forced us to create non-portable
CUDA-FORTRAN versions of some of our routines in order to take full advantage of
Titan, the leadership class computer at OLCF. We are now looking at OpenACC and
OpenMP 4.0 as possible replacements for our CUDA routines so that the code can be
made more portable across platforms.

D. We use libraries to abstract some of the work done in the code. For example, the high
performance I/O library ADIOS is used to efficiently handle the parallel output of
checkpoint-restart files and analysis data on different parallel file systems. The PETSc
library is used to solve the field equations. Each HPC platform provides an optimized
version of PETSc for the local hardware.

E. In the case of our CUDA routines, we were able to reuse some of the original FORTRAN

code by using the CUDA-FORTRAN capability of the PGI compiler. This helped the
XGC1 developers since they didn’t have to translate to C some significant parts of the
code. The switch between the CPU and GPU is controlled by the Makefile and #ifdef
statement in the source code.

F. The same source code runs efficiently on most architectures after fixing a few minor

incompatibilities between compilers, choosing the best compiler options, and optimizing
the compile- and runtime performance options for the target architecture (and target
problem). The GPU hardware, however, required a more drastic change due to the
host+device architecture. Not all the simulation data could fit in the GPU memory and
moving data back-and-forth between host and device was too expensive. We ended up
putting on GPU the most time-consuming part of our simulation, the electron advance,
and rearrange the algorithm so that those electrons would remain on the GPU during the
tens of electron time steps without having to be moved to another node.

G. For the GPU version of our code we rejected the translation of the relevant routines to C,

which would have allowed us to use the more up-to-date NVCC compiler. For portability
purposes and to avoid introducing potential errors, we wanted those routines to have
minimal changes. There are on-going attempts to port key computational kernels such
as multi-species collision and electron push modules to GPU using OpenACC compiler
directives. However, this effort has been constrained by the limited compiler support of
deeply nested subroutine calls in OpenACC. OpenMP 4 and OpenACC directives will be
considered for maintaining code and performance portability on future architectures such
as the SUMMIT machine based on Nvidia GPU and Aurora machine based on Intel
Xeon Phi accelerators.

H. The greatest fear of most developers is to have to rewrite the entire application due to a

drastic change in the computer hardware, as well as in the programming model and
language required to make efficient use of that hardware. The uncertainty in code
performance on the future exascale systems can also cause anxiety, especially if
optimizations on one system result in bad performance on another. Interoperability
between the various approaches, programming models, libraries, is also a big concern.

