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VPIC [1-3] has historically been developed by a small team of developers on an intermittent 
basis over a period of several years in a loosely integrated fashion.  The original version of 
VPIC was designed and implemented by a single developer.  The first significant team effort 
was a port to the LANL Roadrunner machine which was a dramatically new and 
challenging architecture at the time that it was deployed.  Recent efforts have been taken to 
port and optimize VPIC for the LLNL Sequoia platform and the new LANL Trinity platform.  
An effort is currently underway to open-source VPIC to facilitate future development and 
university collaborations. 
 
VPIC is a three-dimensional, relativistic, electromagnetic particle-in-cell code which uses an 
explicit time integration scheme to solve a variety of plasma physics problems on a 
structured mesh.  VPIC is currently a mixture of about 40,000 lines of C and C++ code.  VPIC 
currently exploits parallelism in three distinct ways.  First, there is a distributed memory 
strategy which uses asynchronous MPI calls to hide inter-node communication latencies. 
MPI can be used at the node level, core level or hardware thread level.  Second, there is a 
thread level implemented with Pthreads which will allow use of threads on a node at either 
the core level or hardware thread level.  Finally, there is a vectorization level which is 
implemented as a light weight vector wrapper class which can use either a portable 
implementation or a platform specific hardware intrinsic implementation.  VPIC is specially 
designed to use single precision floating point calculations in order to optimize use of the 
available memory bandwidth. 
 
VPIC has been used extensively on petaflop scale systems such as LANL’s Cielo and 
Roadrunner, ORNL’s Titan and Kraken and NSF’s BlueWaters.  Simulations are routinely 
performed at a significant percentage of the full system capabilities of these machines. 
VPIC is used to perform simulations of astrophysical plasmas, laser-plasma interaction for 
ICF plasmas, relativistic laser-plasma interaction for laser-based accelerators, and first-
principles studies of the mixing of dense plasma.  At this time, VPIC only uses low level 
libraries such as MPI, Pthreads and vendor specific vector hardware intrinsics. 
 
VPIC was originally designed to run efficiently on modern cache-based processors.  An 
efficient particle-in-cell code needs to make efficient use of the memory bandwidth 
available on a node.  To do this, special design decisions were made to allow VPIC to use 
single precision floating point arithmetic.  This included designing interpolation routines to 
use a logical integer coordinate to identify the cell containing the particle and then to only 
use floating point arithmetic to compute the coordinates of the particle relative to a local 
cell coordinate system.  The particle-in-cell algorithm in its most basic description can be 
divided into four steps: push particles to the next time level using electromagnetic field 
values at the individual particle coordinates, accumulate charge and current densities from 
the particle coordinates to the grid coordinates using an interpolation scheme, compute the 



electromagnetic field values at the next required time level using the charge and current 
densities and finally, interpolate the new electromagnetic field values to the individual 
particle coordinates using an interpolation scheme.  An implementation in this high level 
conceptual approach requires three separate loops over the particles.  By using special data 
structures and storing more data quantities per particle, it is possible to implement the 
particle-in-cell algorithm using only a single loop over particles.  The result is a complex 
and long loop over the particles that can be challenging for compilers to vectorize.  Part of 
the complexity is due to conditional logic to handle boundary conditions and account for 
particles which migrate from one cell to another and to different processor domains.  VPIC 
assumes particles do not migrate to different cells or processor domains and marks the 
ones that do for a subsequent post-processing loop.  With properly chosen simulation 
parameters, the number of particles which need to be subsequently post-processed will be 
a small fraction of the total number of particles and will not significantly increase the time 
to complete a step of the algorithm.  Thus, VPIC is designed to process batches of particles 
with the particle data located contiguously in memory and this results in efficiently 
streaming the particle data from memory and maximizing the number of flops performed 
for each memory load/store.  To facilitate vectorization, the various operations required in 
a loop over the particles are implemented using a class of C++ vector primitives that 
themselves are implemented as efficiently as possible using the vector hardware intrinsics 
available for the desired platform. 
 
VPIC uses several abstractions.  As a particle-in-cell code, two main abstractions are 
particles and fields.  VPIC also uses a work pipeline algorithm in which independent chunks 
of work on either particles or fields is assigned to execution threads which may be either 
Pthreads or MPI ranks.  These independent chunks of work are designed to optimize the 
ratio of flops to load/stores from memory.  Finally, VPIC uses a vector class which has a 
portable implementation and can be implemented using vector hardware intrinsics for a 
target platform.  The vector class generally gives about a 2x speedup over the portable 
implementation and so far has been shown to be a good way to get portable performance 
across different machines.  The vector class has been successfully applied to the 
computationally intensive parts of VPIC.  VPIC has not been ported to run on GPU 
hardware, however, so it remains to be seen whether the current VPIC design will perform 
and scale well on GPU based platforms such as Titan and the upcoming CORAL GPU 
platforms.  So far, the current VPIC design has achieved significant fractions of peak 
performance on a number of different architectures. 
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