
Uintah Software Framework

Martin Berzins, Alan Humphrey and John Schmidt , SCI INSTITUTE, University of Utah, Salt Lake City, USA

1. Uintah Development Team.

The Uintah software has been developed continually at the University of Utah since 1998. Funding for this

development has been primarily from DOE but work has been funded by NSF, DOD and by companies. The

Software is MIT Open Source (www.uintah.utah.edu). At present there is a core team of 6-8 staff developers and

about 12 graduate students in Utah. Uintah’s open source module means that development help can be

worldwide.

2. Types of problems/domains/science application problems, methods and code

Uintah is written in C++ and consists of about 700K lines of code overall. The open source Uintah software

combines fluid and solid codes (represented as particles) in the MPM-ICE, in which the multi-material CFD finite

volume code (ICE) is used to model fluids , and the MPM particle code is used to model solids or even fluids. A

specialist low Mach-number combustion code ARCHES is used for a number of applications. The applications

class for Uintah is very broad as it combines fluid-structure interaction problems with adaptive mesh and

particle methods. Examples include angiogenesis, tissue engineering, green urban modeling, blast-wave

simulation, semi-conductor design and multi-scale materials research.

3. Scale of resources commonly used for production runs

Uintah is used on everything from laptops to machines such as Titan, Mira and Blue Waters. Scales of resources

used for production runs vary from a few cores to about 256K cores. Scaling studies with the same production

codes run out to 700K cores.

4. Supercomputers regularly used

Uintah is widely used on many different machines with multi-core cpus and some form of interconnect such as
Infiniband. Specific Utah use is on DOEs Vulcan and Mira, IBM BG/Q, NSFs Cray Blue Waters, DOEs Titan and
NSFs TACC Stampede (CPU + Xeon Phi). In addition DOD use is on Cray XC 30s and IBM Dataplex DOD. As Uintah
has users worldwide it is possible that it is used on other supercomputers too.

5. Libraries/tools used for production science campaigns

The Uintah framework uses the boost library, Hypre and Petsc for linear solvers which depend on BLAS and

LAPACK along with the gperftools library for performance analysis and the tcmalloc memory allocator library

from Google. In addition, we are incorporating the Kokkos library to aid in our efforts to achieve performance

portability across current and future emerging architectures.

http://www.uintah.utah.edu/

6. Abstractions and efforts to develop code (application, library, etc.) portable across diverse architectures.

The Uintah framework is based on the fundamental idea of structuring

software in a layered fashion. The applications layer consists of multiple

Directed Acyclic Graphs (DAG) of (C++) computational tasks, one DAG per

hexahedral mesh patch, belonging to Uintah components that access local

and global data from a data warehouse that is part of an MPI process and

that deals with the details of communication. Once these tasks and their

dependencies are compiled into DAG, a runtime system manages the

asynchronous and out-of-order (where appropriate) execution of these tasks

and addresses the complexities of (global) MPI and (per node) thread based

communication. A hybrid MPI-Pthreads model, with one MPI process per

node and individual tasks are sent to available CPU cores and GPUs resulting

in a dramatic memory reduction. Each component implements the PDE

algorithms on structured adaptive mesh refinement (SAMR) grids. The

runtime system provides a mechanism for integrating multiple simulation

components and by analyzing the dependencies and communication

patterns between these components, executes the simulation scalabley. This

approach makes it possible to improve scalability without changing the underlying applications codes, but only

changing the runtime system. Developers of this runtime system focus on scalability concerns such as load

balancing, task (component) scheduling, communications, including accelerator or co-processor interaction. In

addition, I/O is handled at this level with a design that facilitates the incorporation of efficient libraries such as

PIDX. The separation, of user code and runtime system, as illustrated by Figure 1. This permits scalability

advances in the runtime system, to be automatically applied to applications and allows independent and

simultaneous development of both the applications and the runtime system. Keys to scalability are the out-of-

order and asynchronous execution of tasks. In addition domain specific languages and portability layers are used

e.g. Kokkos.

5. How much code re-use was possible? If something was not possible, please describe why.

 On cpu-based machines all code is re-usable. We expect to use approaches such as our Domain Specific

Languages and Kokkos to provide portability across GPUs and Xeon Phis

6. What successes have you had with performant code across difference architectures? Were the same

algorithms applicable at all across the architectures?

We have ported code to many cpu machines and have had good performance. We have been early users on

leadership class machines (Jaguar, Titan and Mira).

7. What approaches did you reject and why? What was the leading contender rejected?

OpenMP was rejected in favor of Pthreads at node level due to the cost of the OpenMP abstractions and the

embryonic task support in OpenMP at that time (2011).

8. What is your greatest fear going to exascale for application portability and functionality?

The potential lack of funding to do the development work needed at system level support applications

Figure 1 Layers in Uintah Software

