
My development environments won’t probably fit directly in the traditional HPC
application development models because I work on supporting software such as HPC
code-development runtime tools and resource management and scheduling software.

I work on multiple such projects, each with a different team size and interaction type. For
example, for my runtime tools projects, they typically get started as exploratory projects
with students from our academic partners or postdocs, and then a subset of these projects
get transitioned into a production development phase where a set of co-located
programmers refactor and/or harden the prototypes. For my other project, a resource
management and scheduling software development project, the team consists of 4 staff
computer scientists including myself as well as 2 post-docs, a long-term phd student and
a few summer students. Because this is an open-source project, we are also getting quite a
bit of community contributions in terms of their expert advice and a bit of codes.

Most of these projects use multiple languages, typically combining compiled languages
like C/C++ with scripting ones such as shell scripting languages, Lua and Python not
only as convenience utilities and drivers but also as bindings to the core software
interfaces to accelerate development for certain pieces that are not on the performance
critical path. In terms of software complexity, say, measured by lines of code, they also
vary widely ranging anywhere from tens of thousand to hundreds of thousand lines of
code. As supporting HPC software, they exclusively run on supercomputers.

Because these support software products require a wider range of underlying system
interfaces and mechanisms than typical HPC software would demand, devising portable
architectures in terms of both functionality and performance/scalability portability has
been a big challenge for us.

For tools projects, we typically package up these reusable components into what we call
tools infrastructures and build upper-level business tooling logic on top of these. Typical
abstractions include scalable communication infrastructure, instrumentation
infrastructure, scalable tool launching abstraction, etc.

To scale up our tools to a massive scale, we use the following principles. We first port
our infrastructure components on a new platform and tune them to ensure their
performance and scalability. Then, the remaining tuning work is done when all of these
end-user tools that depend on these infrastructure components reveal additional
performance issues. Typically, we can detect many of performance/scalability
bottlenecks during the first phase and fix them so that additional tool-by-tool tuning
efforts can be minimized. Code reuse in terms of building on these infrastructure
components was almost always possible and has greatly facilitated our development.

My greatest fear going to exascale for portability and functionality is not having all
necessary APIs and mechanisms to build our tools on. Unless we build on top of that in
providing portable programming toolset in time, we understand HPC applications have
hard time to reason about problelms like why their codes are not getting good

performance compared to good old systems. In this context, we will need co-design
activites with exascale vendors as early as possible.

Another fear is uncertainty about the main exascale programming models. Unless people
like us understand what those models will be soon and have a head start to support them,
it will be extremely hard to provide a set of supporting software ecosystem in the time
frame the users of exascale systems need it.

