
The hypre Software Library

Hypre team: R. Falgout, T. Kolev, D. Osei-Kuffuor, R. Li, J. Schroder, L. Wang, U. Yang

The hypre library is a software library of high performance preconditioners and solvers for the

solution of large, sparse linear systems of equations on massively parallel computers. It was created

with the primary goal of providing users with advanced parallel preconditioners. The library features

parallel multigrid solvers for both structured and unstructured grid problems. While its main focus is

multigrid methods as solvers as well as preconditioners, it also provides Krylov solvers, as well as

other preconditioners, such parallel ILU and approximate inverse preconditioners for problems that

cannot be solved with multigrid methods. For ease of use, these solvers and preconditioners are

accessed from the application codes via hypre's conceptual linear system interfaces, which allow a

variety of natural problem descriptions and consist of a structured, a semi-structured, and a

traditional linear algebra-based interface.

The current hypre team consists of 5 staff members and 2 postdocs, who are all co-located at LLNL,

however many of the developers are working only part time on hypre, i.e. the effective team size is

actually close to 4 FTEs whose tasks entail not only software development but also theoretical

mathematics research required to develop robust algorithms for hypre. The library has been

developed over the last 18 years with contributions from at least 15 additional former developers, as

well as several summer students. There have been a few community contributions, but generally

contributions to hypre are developed by members of the hypre team.

The hypre library uses C as its main language, but can be called from various other programming

languages, such as Fortran, C++, Python, Java using Babel. For parallel processing hypre uses MPI

and hybrid MPI/OpenMP.

Hypre is used by various application codes, including applications in computational fluid dynamics,

oil recovery, astrophysics, structural dynamics, linear elasticity and more. It is used in various

national labs and universities as well as in industry. The scale of resources commonly used for

production runs varies depending on the application code using hypre, going from moderate to large

scale parallelism. It is also used on desktops and laptops. It is regularly used on supercomputers

such as IBM’s BG/Q (Sequoia, Mira, etc) as well as on Linux clusters at LLNL (Cab, Sierra).

We, i.e. the hypre team, have always made an effort to keep portability across diverse architectures,

which is one of the reasons why hypre has mainly been written in C. We try to respond to new

architectures by examining performance bottlenecks and developing new variants of algorithms or

new algorithms that are better suited for these architectures based on the findings of the

performance evaluations. Generally we try to avoid machine-specific source code. There is less

emphasis on fine tuning the code for specific machines, but a larger focus on generating new

mathematical algorithms. Previous experience has shown that often large, consistent performance

gains across various architectures were achieved by developing good mathematical algorithms. Fine

tuning for a specific machine generally led to a smaller speedup for this machine only. The end

result did not justify the cost of fine-tuning, particularly since hypre is used across a large variety of

machines that are constantly changing. Also, the hypre team is not big enough and does not have

enough funding for this type of work.

Generally, it has been easy to install hypre on a new machine and reuse all its code, since it is not

machine specific. In some cases there has been a decrease in performance due to new architectural

features. We continue our efforts to counter this by developing and implementing new mathematical

algorithms or new variants of existing algorithms. Different architectures can require different options

or even different solvers to achieve optimal performance for hypre.

Regarding emerging architectures with accelerators we decided to not rewrite the library into CUDA,

but instead use OpenMP4, since we want to maintain hypre’s portability and flexibility. We are

however not opposed to providing specific architecture options and using CUDA kernels in this

context, if they are available and can be included in a non-intrusive way. We do not plan to write

CUDA kernels ourselves. We expect hypre to be portable to exascale computers, but we also

believe that changes will be needed to increase its performance. Our biggest concern is getting

efficient use of GPUs and inhibited performance due to data movements between GPU and CPU

memories.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-MI-676078

